Simulation of the Fontan circulation during rest and exercise

Yvette Koeken
Joost Lumens
Theo Arts
Tammo Delhaas

Maastricht University
Biomedical Engineering

funded by the
Dutch Heart Foundation

Hartstichting
NO CONFLICT OF INTEREST TO DECLARE
Physiology of rest and exercise

Biventricular

Fontan

exercise

location

pressure

location

pressure

?
What limits exercise capacity in Fontan?

Limited clinical possibility to address this problem

- Inhomogeneous patient population
- Pressures, flows and volumes difficult to measure, especially during exercise

Computer modelling

- Investigate extreme situations
- Reductionistic as well as holistic approach of regulatory mechanisms
Computational model ‘CircAdapt’

• **Physical laws**
 used to describe relations on
 1. haemodynamics (pressure, flow, and volume);
 2. tissue mechanics (mechanical load, strain, stress)
 \[\rightarrow\text{reduced number of parameters}\]

• **Modular set-up and multi-level**
 Vessels, valves, contractile sheets, and peripheral resistances
 sarcomere > contractile sheet > cardiac cavity > heart > circulation

• **Dynamic simulation**
 Time dependency of volumes/pressures in cavities and vessels, flows through valves, myofiber stresses and strains
CircAdapt model for Fontan

Heart:
- single functional ventricle
- single functional atrium

Systemic circulation

Direct connection
- Systemic veins to Pulmonary arteries

Pulmonary circulation
Simulation set-up

- Dynamic pulmonary resistance (distension & recruitment)
- Systemic resistance changes proportionally to flow
- Blood pressure regulation
- Increase of cardiac output (CO)

\[\text{CO} = \text{SV} \times \text{HR} \]

Increase stroke volume (SV)
Increase heart rate (HR)
Hemodynamics in rest

[Graph showing pressure over time vs. volume for normal aorta, Fontan aorta, normal left ventricle, Fontan ventricle, left ventricle, and right ventricle.]
HR increase preferred over SV increase with respect to Central Venous Pressure during Exercise.

Diagram:
- **SV increase**
 - Systolic pressure
 - Mean arterial pressure
 - Diastolic pressure
- **HR increase**
 - Central venous pressure

Graphs:
- Pressure vs. Cardiac output [l/min]
 - SV increase
 - HR increase

Equations:
- Mean arterial pressure
- Systolic pressure
- Diastolic pressure
- Central venous pressure

Annotations:
- Pulmonary veins
- Atrium
- Valve
- Ventricle
- Systemic veins & Pulmonary arteries
- Systemic arteries
- R_{pulm}
- R_{sys}
Background CVP increase

Lower filling pressure
Discussion

Increased systemic flow &
Increased pulmonary flow

Increased pulmonary pressure drop

Increased ventricular filling pressure
Conclusion

• Exercise in Fontan leads to increased central venous pressure (CVP)

• Increase CVP necessary for adequate pulmonary flow and ventricular filling

 Complications: Edema, decreased systemic pressure drop, etc...

• SV increase requires higher ventricular filling pressure compared to HR increase

• Clinical studies* show limited ventricular filling during exercise in Fontan patients

* Van de Bruaene et al. 2013, Robbers-Visser et al. 2008
Pulmonary vascular resistance

Shachar et al.

- Graph showing pressure drop versus cardiac index for different groups.
- Legend includes controls.

Model implementation

- Diagram illustrating model parameters and calculations.
- Notations: Q_{rest}, Q_{exc}, R_{pulm}, reported PVR.