Pressure volume relations obtained by 3D-real-time echocardiography and mini-pressure wire - multimodal validation-studies with MRI and conductance-catheter in piglets

U. Herberg¹, D. Ladage², E. Gatzweiler¹, O. Dewald³, J. Dörner⁴, K. Linden¹, M. Seehase¹, D. Dörr³, C. Nähle⁴, J. Breuer¹

¹Pediatric Cardiology, ³Cardiac Surgery, ³Radiology, University of Bonn, ²Cardiology, University of Cologne

Supported by Deutschen Herzstiftung F29/08
Pressure-Volume Relation

Pressure-Volume-Relation (PVR)

- systol. und diastol. function
- work load
- ventriculo-arterial coupling
- quantification of interventions
 - medical
 - caths
 - operations
Introduction

Gold Standard Conductance-Technology

Disadvantage:
- Calibration with a 2nd method
- >= 5F sheath
- additional radiation
 ⇒ limited use in small children

Less invasive, alternative technique in small hearts?
3D-Volumetry

Volume-Time-Curve

3D-Echocardiography
Instantaneous Pressure

Mini pressure wire with micromanometer

Mini-Pressure wire 0.014``
RADl, St. Jude

Online pressure time curves
3DE-derived PVR

- 3DE: Volume-time curve
- Synchronization 5ms (Herberg et al, 2013)
- 3D-derived PV-loop

simultaneously pressure-time curve
Aim & Methods

Volumetry: \(\rightarrow\) 3DE vs CMR

Accuracy of 3DE **volume measurements** in small hearts vs CMR as gold standard for volume analysis

Pressure Volume Analysis: \(\rightarrow\) 3DE vs Conductance

Validation of **accuracy and reliability** of PVR obtained by 3D-echocardiography & mini pressure wire vs gold standard conductance-technology

using identical anesthesia, animal preparation & monitoring
Volumetry 3DE vs CMR

8 piglets
weight 5.5kg ± 0.54
BSA 0.32 ± 0.03 m²

3D-Echocardiography
Philips IE 33, X7-2
Full Volume Datasets using 4 cardiac cycles
Volume rate 35-50/s

Analysis:
LV QLab Adv 7.0 und 8.1
RV TomTec RV Fct 1.1

CMR
3 Tesla Ingenia, Philips
1.25mmx1.25mm mit 4mm slice thickness
Frame rate 50/s

Analysis:
View Forum Philips
LV – short axis
RV – axial cine
Comparison 3DE – CMR
Bland-Altman-Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CMR vrs 3D</th>
<th>Bias 95% Limits of Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LV</td>
<td>RV</td>
</tr>
<tr>
<td>EDV [ml]</td>
<td>-0.03</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>[-1.2; 1.1]</td>
<td>[-3.1;3.1]</td>
</tr>
<tr>
<td>ESV [ml]</td>
<td>-0.12</td>
<td>-0.6</td>
</tr>
<tr>
<td></td>
<td>[-1.1; 0.9]</td>
<td>[-3.1; 1.9]</td>
</tr>
<tr>
<td>SV [ml]</td>
<td>-0.01</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>[-2.4; 2.2]</td>
<td>[-0.7; 1.9]</td>
</tr>
<tr>
<td>EF %</td>
<td>2.71</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>[-5.6; 11.0]</td>
<td>[-8.0; 18.9]</td>
</tr>
</tbody>
</table>
Volume-Time-Curves
Pressure-Volume-Relation

❤ 20 Piglets

Weight: 6.17 [3.6-8.0] kg
BSA 0.34 [0.24-0.41] m²

❤ Simultaneous comparison of PVR

• 3D + mini-pressure-wire
• conductance technology

❤ various pharmacologic conditions

• Baseline
• Phenylephrin 10-40µg/kg/min
• Esmolol 1mg/kg
Pressure-Volume-Relation

Parameter:

<table>
<thead>
<tr>
<th>Systolic Function</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>dp/dt max – maximal rate of pressure change over time</td>
<td></td>
</tr>
<tr>
<td>Ees</td>
<td>Endsystolic Elastance, “contractility”</td>
</tr>
<tr>
<td>Ea</td>
<td>Effective Arterial Elastance, “art. resistance”</td>
</tr>
<tr>
<td>Ees/Ea</td>
<td>ventriculoarterial coupling</td>
</tr>
</tbody>
</table>

\[1 \text{ single beat calculation} \text{ Ten Brinke, 2008 and 2010} \]

ESP=end systolic pressure
Systolic PVR under various conditions

3D-Echo (3D)-derived pressure-volume relations compared to parameters obtained by conductance technology (Cond) under various conditions (mean and 95% CI), n=16.

* = significant from baseline

Ees – load independent contractility; Ea – load independent vascular resistance
Systolic PVR under various conditions

3D-Echo (3D)-derived pressure-volume relations compared to parameters obtained by conductance technology (Cond) under various conditions (mean and 95% CI), n=16. * = significant from baseline

Baseline Ees 18-22 mmHg/ml; Phenyl Ees 27 mmHg/ml
Cassidy, 1997; Bakhtiary, 2007
Parameter:

Diastolic Function

\(\text{dp/dt min} \) - minimal rate of pressure change over time

\(\text{EDV}_{10} \) – EDV at a common enddiastolic pressure of 10 mmHg

\(\tau \) – isovolumic relaxation constant

\(^1\) Klotz, 2006 and 2007
Diastolic PVR under various conditions

3D-Echo (3D)-derived pressure-volume relations compared to parameters obtained by conductance technology (Cond) under various conditions (mean and 95% CI), n=16.

* = significant from baseline

Baseline dp/dt min 2200-2500 mmHg/s
Phenyle dp/dt min 2400mmHg/s
Cassidy, 1997; Klautz 1997
Comparison 3DE – Cond
Bland-Altman-Analysis

Intraobserver

<table>
<thead>
<tr>
<th></th>
<th>Variation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ees</td>
<td>2.79 ± 3.53</td>
</tr>
<tr>
<td>Ees/Ea</td>
<td>3.07 ± 3.60</td>
</tr>
<tr>
<td>Tau</td>
<td>0.07 ± 0.16</td>
</tr>
<tr>
<td>EDV10</td>
<td>2.55 ± 2.18</td>
</tr>
</tbody>
</table>

Interobserver

<table>
<thead>
<tr>
<th></th>
<th>Variation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ees</td>
<td>2.61 ± 3.34</td>
</tr>
<tr>
<td>Ees/Ea</td>
<td>2.83 ± 3.49</td>
</tr>
<tr>
<td>Tau</td>
<td>0.75 ± 1.42</td>
</tr>
<tr>
<td>EDV10</td>
<td>1.2 ± 0.79</td>
</tr>
</tbody>
</table>

Intra- and Interobserver variation < 10%
Conclusion I

3DE volume calculations in small hearts
- good agreement to CMR
- volume changes over time are comparable to CMR

PVR generated by 3DE & pressure wire
- good agreement to results obtained by the gold standard conductance technology
- feasible and reliable to assess different conditions of cardiac function in small hearts
Conclusion II

• Limitations
 • Single beat algorithms

• Less invasive

• applicable in neonates and small children (Herberg, Gatzweiler et al, 2013)
Thank you for your attention

Acknowledgements

House for experimental therapy:
Andrea Lohmer, med. vet.
Ute Lohmer, Study Nurse
Dr. Wolfgang Eichelkraut, med. vet.

Assistance
Nicola Rieder, Katharina Czeczar, Anna Hoppe

Statistics
Eva Gatzweiler

Deutsche Herzstiftung
Ventricular pressure–volume loops obtained by 3D real-time echocardiography and mini pressure wire—a feasibility study

Ulrike Herberg · Eva Gatzweiler · Thomas Breuer · Johannes Breuer

PVR obtained by

3DE + simultaneous pressure measurements

using a mini pressure wire

is feasible and reproducible
Ventricular pressure–volume loops obtained by 3D real-time echocardiography and mini pressure wire—a feasibility study

Ulrike Herberg · Eva Gatzweiler · Thomas Breuer · Johannes Breuer

N=31

Alter	3 Tage - 22,7 Jahre
	Median 1,8 Jahre
Gewicht	2,8 - 80 kg
	Median 11 kg
Ventricular pressure–volume loops obtained by 3D real-time echocardiography and mini pressure wire—a feasibility study

Ulrike Herberg · Eva Gatzweiler · Thomas Breuer · Johannes Breuer