New QT and JT correction methods in right bundle branch block in children

Benatar A., Dewals W., Decraene T., Feenstra A.
Department of Paediatric Cardiology
Universitair Ziekenhuis Brussel VUB
Brussels
Belgium

Introduction: QT interval prolongation on the surface ECG is a known marker of abnormal repolarization and the potential for arhythmogenesis. In patients with right bundle branch block (RBBB), the assessment of ventricular repolarization remains controversial. We set out to compute the best derived QT and JT formula correction factors in children with RBBB.

Methods: we enrolled a cohort of 96 children with RBBB. In a quiet state a digital 12 lead electrocardiogram was recorded and stored. In 9 patients, >1 ECG at different time intervals were obtained (total of 129 ECG’s studied) The QT, JT and RR intervals were measured digitally in lead 2. The QT/RR and JT/RR curves were fitted with 2 regression analysis. Firstly a linear regression for constant \(\alpha \), whereby QTc = QT + \(\alpha \times (1-RR) \), and JTc = JT + \(\alpha \times (1-RR) \) and secondly a natural log-linear regression analysis for constant \(\beta \) whereby QTc = QT/RR\(^{\beta} \) and JTc = JT/RR\(^{\beta} \). Additionally, linear regression analyses of QTc/RR and JTc/RR for each two formulae were performed as well as QTc/JTc vs QRS duration to obtain slope and R2. A slope and R2 close to zero judged to eliminate the effect of heart rate on QT interval.

Results: mean age 8.4 years, range 0.3 -18 years, median 7.0 years, Mean QRS duration was 124 ms SD + 18 ms, median 120 ms, range 90– 174 ms. From linear regression analysis, correction factor for JT was \(\alpha = 0.19 \) and \(\beta = 0.43 \) and for QT \(\alpha = 0.22 \) and \(\beta = 0.39 \). Linear Regression plots for QTc and JTc against RR intervals: QTc linear: slope < 0.005, R2 < 0.01 QTc log: slope < 0.05 R2 < 0.01, JTc linear slope 0.039 R2 > 0.001, JTc log slope -0.03 R2 < 0.001. QRS duration plotted against JTc \(\alpha = 0.028 \) and JTc \(\beta = 0.019; \) QTc \(\alpha = 0.3, \) QTc \(\beta = 0.32. \)

Conclusion: Correction for heart rate was good for both JT and QT new formulae. For QRS duration correction, unsurprisingly, the JT formulae were superior. For pediatric subjects with RBBB, these new JTc and the QTc correction formulae perform well.