Porcine pulmonary prostheses versus bovine jugular vein to repair the dysfunctional right ventricular outflow tract in children and teenagers.
Hospital Universitario La Paz. Madrid. Spain

Introduction & Objectives:
Residual dysfunction of the right ventricle outflow tract (RVOT), due to congenital reconstructive surgery, is usually reoperated into adulthood. Sometimes, symptoms and/or dysfunction of the right ventricle (RV) during childhood may condition an earlier pulmonary valve replacement. Our target is to compare the results of the valved bovine jugular vein (BJV)-Contegra® versus the stented porcine pulmonary prosthesis (PPP), implanted in patients under 18 years of age.

Methods:
All reoperations performed for prosthesis interposition (BJV or PPP), in patients aged under 18 years, with dysfunction of the RVOT after previous congenital cardiac surgery. Study period 2003-2015.
Prosthetic dysfunction criteria: surgical/percutaneous reintervention, gradient > 50 mmHg or severe prosthetic regurgitation.
Statistical Analysis with SPSS 20.0.

Results:
21 PPP/20 patients and 15 BJV/15 patients. 60% male. Fallot, most common primary disease in both groups.
* From 24 preoperative variables studied, statistically significant differences occur in 11, highlighting:
 - Previous surgery type on RVOT (p<0.001, more transannular in PPP group)
 - Degree of previous pulmonary regurgitation (p=0.011, more insufficiency in PPP)
 - RV ejection fraction (p=0.016, lower in PPP group)
 - RV diastolic volume (p=0.026, more dilated in PPP group).

No inhospital mortality.
* From 15 perioperative variables, statistically significant differences in:
 - Mean age of the implant 8.8 ± 4.4 years in BJV group versus 11.8 in PPP group (p=0.044).
 - Implanted valve diameter (p<0.001, lower in BJV cohort).
 - Aortic cross-clamping need (p=0.015, higher in Contegra® group).

No late mortality. BJV mean follow-up 4.8 years, versus 2.4 in PPP group (p=0.046).
* From other 16 postoperative variables, differences were also statistically significant in:
 - Mean transprosthetic systolic gradient (p<0.001, lower in PPP cohort).
 - Prosthetic dysfunction (p=0.006, 60% BJV versus 23% PPP).

Presurgical MR data
<table>
<thead>
<tr>
<th></th>
<th>PPP</th>
<th>BJV</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRVV (cm³/m²)</td>
<td>46.3</td>
<td>31.3</td>
</tr>
<tr>
<td>DRVV (cm³/m²)</td>
<td>50.1</td>
<td>95.0</td>
</tr>
<tr>
<td>RVEF (%)</td>
<td>47.5</td>
<td>53.8</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>56</td>
<td>50.5</td>
</tr>
</tbody>
</table>

Post surgical MR data
<table>
<thead>
<tr>
<th></th>
<th>PPP</th>
<th>BJV</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRVV (cm³/m²)</td>
<td>41.8</td>
<td>38.5</td>
</tr>
<tr>
<td>DRVV (cm³/m²)</td>
<td>56.8</td>
<td>86</td>
</tr>
<tr>
<td>RVEF (%)</td>
<td>46.4</td>
<td>54.2</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>54.2</td>
<td>57.4</td>
</tr>
</tbody>
</table>

Conclusions:
• With the prudence imposed by differences in follow-up time and type of previous surgery for the right ventricle outlet pathway in both cohorts, it seems reasonable to choose a PPP to recover functionality of the RVOT.
• The BJV would be elected when a conduit is essential.