3D transthoracic echocardiography to assess ventricular septal defect anatomy and severity

Hadeed K., Hascoet S., Amadieu R., Karsenty C., Dulac Y., Acar P.,
Pediatric cardiology unit, Children Hospital, Toulouse, France.

Background: Ventricular septal defect (VSD) is assessed classically by bi-dimensional transthoracic echocardiography (2D-TTE) which seems to underestimate defect size. Our aim was to compare VSD size and morphology obtained by 2D-TTE with those obtained by three-dimensional transthoracic echocardiography (3D-TTE), and to correlate morphological parameters with shunt severity.

Methods: 48 patients with muscular (22.9%) and membranous (77.1%) VSDs were included (median age 21.4 months). Patients were classified according to shunt severity. Type 1 minor shunt, 2a moderate shunt, and 2b severe shunt. Minimal (min-2D) and maximal (max-2D) diameters were assessed using 2D-TTE. Minimal (min-3D), maximal (max-3D) diameters, systolic (sVSDA) and diastolic (dVSDA) areas of the VSD, and aortic valvular area (AVA) were obtained from 3D full volume dataset.

Results: Max-3D was higher than Max-2D diameter (p<0.0001). The difference was less between min-3D and min-2D diameters although it remained significant (p=0.001). VSDs were asymmetric with a mean asymmetry ratio 2.3±1.4 by 3D-TTE. Asymmetry ratio was higher in muscular than in membranous VSDs. Mean VSD surface area variation was 32%. It was significantly higher in muscular than in membranous VSDs (p=0.0001). VSD severity was better correlated with minimal rather than maximal diameter. Better correlation was found using the defect area (sVSDA/BSA ratio, sVSDA/AVA ratio; r=0.60, p=0.0008; r=0.63, p=0.0002). Shunt severity was inversely correlated with the asymmetry ratio. The best parameter to predict shunt severity was sVSDA/AVA ratio.

Conclusion: 3D TTE allows a precise morphological and quantitative assessment of VSD. sVSDA/AVA ratio is an accurate diagnostic tool to predict shunt severity.