Quantifying ecosystem functions & services under different management regimes

Alexander van Oudenhoven
alexander.vanoudenhoven@wur.nl

Environmental Systems Analysis Group – Wageningen UR

Solutions for Sustaining Natural Capital and Ecosystem Services
Session I. A: Integrated quantification .. (Probensaal) - June 8th, 2010
Outline

- Background
- A conceptual framework applied
 - Indicators, indicators & indicators
 - Case-study
 - Matrices
- Database
- Challenges
Introduction

- Three multidisciplinary PhD research projects
 - To quantify, model and value the relations between management regimes, biodiversity and the provision of the total bundle of ecosystem services at regional / landscape level

- Supervision Dr. Dolf de Groot (ESA - Wageningen UR), Dr. Rob Alkemade (PBL) & Prof. Rik Leemans (ESA)

- Remaining challenge (ICSU/UNESCO/UNU, de Groot et al., TEEB)
 - “the quantification of relationship .. mgmt systems & ES”
 - “overview and model to integrate these dependencies is exceedingly necessary to evaluate the emerging policies“
Background (1)

- **Millennium Ecosystem Assessment (MA 2005)**
 - “Benefits people obtain from ecosystems”
 - Basis for valuation and conservation studies
 - Global (State & Trends) / Sub-Global Assessments (SGMA)

- **Difficulties:**
 - (Local) empirical evidence on relationship between land mgmt - biodiversity & ESS provision missing
 - Decision-making frameworks and valuation schemes: double-counting and neglecting (other) service values
Background (2)

The Economics of Ecosystems & Biodiversity (TEEB)

- “The direct & indirect contributions to human well-being”
- Distinguishes between ES and economic benefits
- Values no supporting, but habitat services (rest underlying)
- “Cascade” – pathway from Ecosystem Structure & Processes to human wellbeing
Case Study - Conc. Framework applied

- National landscape “Groene Woud”
- Area about 338 km²
- Services targeted:
 - Food production
 - Air Quality regulation
 - Recreation / tourism
 - Habitat service
 - Water retention
 - Habitat service
 - Biocontrol
Conceptual Framework – Case Study

Positive / negative impact may lead to (a need for) renewed decision making - pressure

Policy / decision making
Based on the current and potential value of the ecosystem as well as response from stakeholders.

1

The "Groene Woud" is a national landscape, i.e. the unique core values / qualities of the area have to be protected:
- visible historical landscape elements & traditional land-use practices
- green area amidst urban areas (for recreation, biodiversity, etc.)
- an area in which local economic activity / collaboration is stimulated

Because it is also part of ecological networks such as Natura 2000, the "Groene Woud" has an important function in maintaining biodiversity.
Conceptual Framework – Case Study

ECOSYSTEM (Supply / "State")

3b

Capacity (function)

- Coniferous trees have a higher capacity to capture PM10 than deciduous trees (63 vs 36 kg/ha/yr). Even solitary trees & grassland have a significant contribution.

3a

Property

The processes / elements / characteristics of an ecosystem that determine whether a service can at all be provided.

- Whether vegetation / land cover is able to capture PM10, depends, among others on the species composition, size & volume, degrees of openness and porosity. The location also plays an important role.

Pressures

2b

Either external or internal, other pressures that have to be taken into account.

- Expanding urban areas, increasing demand for food production and intensifying emissions are pressures.

Land Use Change

2a

A result of the Management State. Human intervention & "naturalness" determine the management intensity.

- The area is a "cultural-ecological" landscape, mainly with extensively managed maize & grass land, rural settlements and larger patches of forest & heathland. Because of this heterogeneity, management focusing on agriculture, tourism, air quality and / or biodiversity measures can have different impacts.

Ecosystem Service (Actual use / Performance)

4

The direct and indirect contributions of the ecosystem to human well-being.

- We estimate the PM10 capture to be around 600 tons / yr. The contribution to the concentration reduction (in the area) is difficult to determine, although comparing the (point source) emissions and concentrations can provide useful insights.

HUMAN WELL-BEING ("Demand")

5a

Benefit

- The welfare gains generated by the service to fulfill human needs.

- In the Netherlands, about 3000 people die prematurely due to short-term exposure to PM10 annually. For long-term exposure the number is about 18,000 / yr. Reducing this number and the number of health complaints and doctors visits can be seen as a clear benefit.

5b

Value

- The ecological, socio-cultural & economic value attached to the services.

- If air quality targets are met, this is valued by the local population, recreationists and (national) government. Although difficult to quantify, economic impacts can be especially felt in the recreation / tourism branch.

Policy / decision making

Based on the current and potential value of the ecosystem as well as response from stakeholders.

- The "Groene Woud" is a national landscape, i.e. the unique core values / qualities of the area have to be protected:
 - visible historical landscape elements & traditional land-use practices
 - green area amidst urban areas (for recreation, biodiversity, etc.)
 - an area in which local economic activity / collaboration is stimulated

- Because it is also part of ecological networks such as Natura 2000, the "Groene Woud" has an important function in maintaining biodiversity.
Conceptual Framework – Case Study

Pressures

Either external or internal, other pressures

Expanding urban areas, increasing demand for food production and intensifying (emissions) are pressures that have to be taken into account.

Land Use Change

A result of the Management State. Human intervention & "naturalness" determine the management intensity.

The area is a "cultural-ecological" landscape, mainly with extensively managed maize & grass land, rural settlements and larger patches of forest & heathland. Because of this heterogeneity, management focusing on agriculture, tourism, air quality and / or biodiversity measures can have different impacts.
Conceptual Framework – Case Study

ECOSYSTEM (Supply / "State")

Capacity (function)
- Coniferous trees have a higher capacity to capture PM10 than deciduous trees (63 vs 36 kg/ha/yr). Even solitary trees & maize / grassland have a significant contribution.

Property
- The processes / elements / characteristics of an ecosystem that determine whether a service can at all be provided.
 - Whether vegetation / land cover is able to capture PM10, depends among others on the species composition, size & volume, degrees of openness and porosity. The location also plays an important role.

Pressures
- Either external or internal, other pressures
 - Expanding urban areas, increasing demand for food production and intensifying (emissions) are pressures that have to be taken into account.

Land Use Change
- A result of the Management State. Human intervention & "naturalness" determine the management intensity.
 - The area is a "cultural-ecological" landscape, mainly with extensively managed maize & grass land, rural settlements and larger patches of forest & heathland. Because of this heterogeneity, management focusing on agriculture, tourism, air quality and / or biodiversity measures can have different impacts.

Policy / decision making
- Based on the current and potential value of the ecosystem as well as response from stakeholders.
 - The "Groene Woud" is a national landscape, i.e. the unique core values / qualities of the area have to be protected:
 - visible historical landscape elements & traditional land-use practices
 - green area amidst urban areas (for recreation, biodiversity, etc.)
 - an area in which local economic activity / collaboration is stimulated
 - Because it is also part of ecological networks such as Natura 2000, the "Groene Woud" has an important function in maintaining biodiversity.

Ecosystem Service (Actual use / Performance)
- The direct and indirect contributions of the ecosystem to human well-being
 - We estimate the PM10 capture to be around 600 tons / yr. The contribution to the concentration reduction (in the area) is difficult to determine, although comparing the (point source) emissions and concentrations can provide useful insights.

HUMAN WELL-BEING ("Demand")

Benefit
- The welfare gains generated by the service to fulfill human needs
 - In the Netherlands, about 3000 people die prematurely due to short-term exposure to PM10 annually - for long term exposure the number is about 18,000 / yr. Reducing this number and the number of health complaints and doctors visits can be seen as a clear benefit.

Value
- The ecological, socio-cultural & economic value attached to the services
 - If air quality targets are met, this is valued by the local population, recreants and (national) government. Although difficult to quantify, economic impacts can be especially felt in the recreation / tourism branch.

Positive / negative impact may lead to (a need for) renewed decision making - pressure
Conceptual Framework – Case Study

ECOSYSTEM
(Supply / "State")

3b
Capacity (function)
.. of the ecosystem to provide the service (function)

Coniferous trees have a higher capacity to capture PM10 than deciduous trees (63 vs 36 kg/ha/yr). Even solitary trees & maize- / grassland have a significant contribution.

3a
Property

The processes / elements / characteristics of an ecosystem that determine whether a service can at all be provided

Whether vegetation / land cover is able to capture PM10, depends, among others on the species composition, size & volume, degrees of openness and porosity. The location also plays an important role.
Conceptual Framework – Case Study

ECOSYSTEM (Supply / "State")

Capacity (function)

3b
... of the ecosystem to provide the service (function)
Coniferous trees have a higher capacity to capture PM10 than deciduous trees (83 vs 36 kg/ha/yr). Even solitary trees & maize- / grassland have a significant contribution.

Property

3a
The processes / elements / characteristics of an ecosystem that determine whether a service can at all be provided

Whether vegetation / land cover is able to capture PM10, depends, among others on the species composition, size & volume, degrees of openness and porosity. The location also plays an important role.

Pressures 2b
Either external or internal, other pressures
Expanding urban areas, increasing demand for food production and intensifying (emissions) are pressures that have to be taken into account.

Land Use Change 2a
A result of the Management State. Human Intervention & "naturalness" determine the management intensity.

Ecosystem Service (Actual use / Performance)

4
The direct and indirect contributions of the ecosystem to human well-being
We estimate the PM10 capture to be around 600 tons / yr. The contribution to the concentration reduction (in the area) is difficult to determine, although comparing the (point source) emissions and concentrations can provide useful insights.

HUMAN WELL-BEING ("Demand")

Benefit

5a
The welfare gains generated by the service to fulfill human needs
In The Netherlands, about 3000 people die prematurely due to short-term exposure to PM10 annually - for long term exposure the number is about 18,000 / yr. Reducing this number and the number of health complaints and doctors visits can be seen as a clear benefit.

Value

5b
The ecological, socio-cultural & economic value attached to the services

If air quality targets are met, this is valued by the local population, recreationists and (national) government. Although difficult to quantify, economic impacts can be especially felt in the recreation / tourism branch.

Policy / decision making 1
Based on the current and potential value of the ecosystem as well as response from stakeholders.

The "Groene Woud" is a national landscape, i.e. the unique core values / qualities of the area have to be protected:
- visible historical landscape elements & traditional land-use practices
- green area amidst urban areas (for recreation, biodiversity, etc.)
- an area in which local economic activity / collaboration is stimulated
Because it is also part of ecological networks such as Natura 2000, the "Groene Woud" has an important function in maintaining biodiversity.
Ecosystem Service (Actual use / Performance)

The direct and indirect contributions of the ecosystem to human well-being

We estimate the PM 10 capture to be around 600 tons / yr. The contribution to the concentration reduction (in the area) is difficult to determine, although comparing the (point source) emissions and concentrations can provide useful insights.
Conceptual Framework – Case Study

ECOSYSTEM (Supply / "State")

3b Capacity (function)

3. of the ecosystem to provide the service (function)

Coniferous trees have a higher capacity to capture PM10 than deciduous trees (33 vs 36 kg/ha/yr). Even solitary trees & maize / grassland have a significant contribution.

3a Property

The processes / elements / characteristics of an ecosystem that determine whether a service can at all be provided.

Whether vegetation / land cover is able to capture PM10, depends, among others on the species composition, size & volume, degrees of openness and porosity. The location also plays an important role.

4 Ecosystem Service (Actual use / Performance)

The direct and indirect contributions of the ecosystem to human well-being.

We estimate the PM10 capture to be around 600 tons / yr. The contribution to the concentration reduction in the area is difficult to determine, although comparing the (point source) emissions and concentrations can provide useful insights.

5a Human Well-Being ("Demand")

Benefit

The welfare gains generated by the service to fulfill human needs.

In The Netherlands, about 30000 people die prematurely due to short-term exposure to PM10 annually - for long term exposure the number is about 18000 / yr. Reducing this number and the number of health complaints and doctors visits can be seen as a clear benefit.

5b Value

The ecological, socio-cultural & economic value attached to the services.

If air quality targets are met, this is valued by the local population, recreation and (national) government. Although difficult to quantify, economic impacts can be especially felt in the recreation / tourism branch.

Positive / negative impact may lead to (a need for) renewed decision making - pressure.

Pressures

2b Either external or internal, other pressures

Expanding urban areas, increasing demand for food production and intensifying (emissions) are pressures that have to be taken into account.

Land Use Change

2a A result of the Management State. Human Intervention & "naturalness" determine the management intensity.

The area is a "cultural-ecological" landscape, mainly with extensively managed maize & grass land, rural settlements and larger patches of forest & heathland. Because of this heterogeneity, management focusing on agriculture, tourism, air quality and / or biodiversity measures can have different impacts.

Policy / decision making

1 Based on the current and potential value of the ecosystem as well as response from stakeholders.

The "Groene Woud" is a national landscape, i.e. the unique core values / qualities of the area have to be protected:

- visible historical landscape elements & traditional land-use practices
- green area amidst urban areas (for recreation, biodiversity, etc.)
- an area in which local economic activity / collaboration is stimulated

Because it is also part of ecological networks such as Natura 2000, the "Groene Woud" has an important function in maintaining biodiversity.
HUMAN WELL-BEING
(“Demand”)

5a
Benefit
The welfare gains generated by the service to fulfill human needs

In The Netherlands, about 3000 people die prematurely due to short-term exposure to PM10 annually - for long term exposure the number is about 18,000 / yr. Reducing this number and the number of health complaints and doctors visits can be seen as a clear benefit.

5b
Value
The ecological, socio-cultural & economic value attached to the services

If air quality targets are met, this is valued by the local population, recreants and (national) government. Although difficult to quantify, economic impacts can be especially felt in the recreation / tourism branch.
Conceptual Framework – Case Study

ECOSYSTEM (Supply / "State")

Capacity (function)

... of the ecosystem to provide the service (function)
Coniferous trees have a higher capacity to capture PM10 than deciduous trees (63 vs 36 kg/ha/yr). Even solitary trees & maize-/grassland have a significant contribution.

Property

The processes / elements / characteristics of an ecosystem that determine whether a service can at all be provided

Whether vegetation / land cover is able to capture PM10, depends, among others on the species composition, size & volume, degrees of openness and porosity. The location also plays an important role.

Ecosystem Service (Actual use / Performance)

The direct and indirect contributions of the ecosystem to human well-being

We estimate the PM10 capture to be around 600 tons / yr. The contribution to the concentration reduction (in the area) is difficult to determine, although comparing the (point source) emissions and concentrations can provide useful insights.

HUMAN WELL-BEING ("Demand")

Benefit

The welfare gains generated by the service to fulfill human needs

In The Netherlands, about 3000 people die prematurely due to short-term exposure to PM10 annually - for long term exposure the number is about 18,000 / yr. Reducing this number and the number of health complaints and doctors visits can be seen as a clear benefit.

Value

The ecological, socio-cultural & economic value attached to the services

If air quality targets are met, this is valued by the local population, recreation and (national) government. Although difficult to quantify, economic impacts can be especially felt in the recreation / tourism branch.

Pressures 2b

Either external or internal, other pressures
Expanding urban areas, increasing demand for food production and intensifying (emissions) are pressures that have to be taken into account.

Land Use Change 2a

A result of the Management State. Human Intervention & "naturalness" determine the management intensity.

The area is a "cultural-ecological" landscape, mainly with extensively managed maize & grass land, rural settlements and larger patches of forest & heathland. Because of this heterogeneity, management focusing on agriculture, tourism, air quality and / or biodiversity measures can have different impacts.

Policy / decision making 1

Based on the current and potential value of the ecosystem as well as response from stakeholders.

The "Groene Woud" is a national landscape, i.e. the unique core values / qualities of the area have to be protected:
- visible historical landscape elements & traditional land-use practices
- green area amidst urban areas (for recreation, biodiversity, etc.)
- an area in which local economic activity / collaboration is stimulated
Because it is also part of ecological networks such as Natura 2000, the "Groene Woud" has an important function in maintaining biodiversity.
From (applied) framework to matrix

- Management state & (selected) ecosystem type
 - Intensive cropland, pristine wetland, agro-forestry, etc.
- Case study: *woodland*, grassland, etc. - ext. managed

<table>
<thead>
<tr>
<th>3a Property</th>
<th>3b Capacity</th>
<th>4 Service</th>
<th>5a Benefit</th>
<th>5b Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species composition, size, density, openness, distance</td>
<td>PM10 capture: grass (36)</td>
<td>PM10 captured: Δ emissions</td>
<td>20,000 † / yr (Long-T)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Habitat cohesion (species dependent)</td>
<td></td>
<td>3,000 † / yr (Short-T). Targets met (50µg/m³)</td>
<td></td>
</tr>
<tr>
<td>"Nature bridges", Buffer zones, crossings</td>
<td></td>
<td></td>
<td>"Image" of area. Life-cycle + other services. Info for policy makers.</td>
<td></td>
</tr>
<tr>
<td>Elements with stated appreciation: woodlands = #1 + openness, naturalness</td>
<td>How many recreants within circle < 15 km 75% (NL)</td>
<td># people / yr. (NL)</td>
<td>Relaxation, health, togetherness, restaurant visits, etc.</td>
<td></td>
</tr>
</tbody>
</table>

Air Quality Regulation: PM 10 removal

Habitat service: habitat cohesion

Recreation & Tourism: Recreation - cycling
Output – (Capacity) Maps

- Many “capacity” / potential maps;
 - Link capture (3. Capacity) & Δ emissions (4. Service)
 - “ probability (3. Capacity) & occurrence of species (4. Service)
From (applied) framework to matrix

- **Management state & (selected) ecosystem type**
 - Intensive cropland, pristine wetland, agro-forestry, etc.
- **Case study:** woodland, grassland, etc. - ext. managed

<table>
<thead>
<tr>
<th>3a Property</th>
<th>3b Capacity</th>
<th>4 Service</th>
<th>5a Benefit</th>
<th>5b Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species composition, size, density, openness, distance</td>
<td>PM10 capture: grass (36), coniferous (63), dec (36)</td>
<td>PM10 captured: 600 tons /yr - Δ emissions</td>
<td>20,000 † / yr (Long-T) 3,000 † / yr (Short-T). Targets met (50μg/m³)</td>
<td></td>
</tr>
<tr>
<td>“Nature bridges”, Buffer zones, crossings</td>
<td>Habitat cohesion (species-dependant)</td>
<td># of (target) species occurring @ location</td>
<td>“Image” of area. Life-cycle + other services. Info for policy makers.</td>
<td></td>
</tr>
<tr>
<td>Elements with stated appreciation: woodlands = #1 + openness, naturalness</td>
<td>How many recreants within circle < 15 km. 75% (NL)</td>
<td># people / yr. 8.4 mln trips/yr (NL)</td>
<td>Relaxation, health, togetherness, restaurant visits, etc.</td>
<td></td>
</tr>
</tbody>
</table>
Usage / availability of data

- Lots of “Management x Ecosystem” matrices can be compared.
Database

- Data points, that can be used in these matrices
 - Basic info the same (location, ecosystem, mgmt, study, etc.)
 - Service-specific information
 - Sub-service level (lowest aggr. level - can be upscaled)
- Describe per data point:
 - Its “usability” / application (scale, region, etc.)
 - References (has it been confirmed by others, reliability)
- End Goal: Online accessible database:
 - Indicators “shopping list” (descriptive)
 - (Benchmark) values – quantitative (/ qualitative?)
Challenges

- Ecosystem sub-services (at the moment > 70)
- Ecosystem Services Indicators:
 - All steps of framework, generic & specific per sub-service
 - Comparable between services
 - Different scales - ok for data, NB when applying (model / map)
 - (Over) simplification (biodiversity / “risk of interdisciplinary”)
 - Enable addressing sustainability
 - Causality / correlation
- The indicators + matrix form “skeleton” of the database
Challenges, continued

- Indirect vs. direct: underlying services vs. services that “actually” deliver services
- Not always possible to fill in every cell of the matrix
 - Property vs. Capacity / Service vs. Benefit (Causality)
- Qualitative / quantitative information
- Model output + maps can also deliver data “in return”
Conclusions

- Lots of data available
 - Studies / reports (not always called “ES” (grey literature))
 - Models’ / mapping output
- Framework allows for stepwise analysis, if explained
 - Information on service / benefit, indicators needed!
 - Capacity can also be valued (just like in economics)
- Comparing / “overlaying” matrices enables;
 - Assessing trade-offs
 - Bundle of ecosystem services
- Sustainability assessed through demand / supply
 - Sustainability indicators have to be established
 - “Safe Minimum Standard” (Fisher et al., 2008)
Thank you for your attention

alexander.vanoudenhoven@wur.nl

www.es-partnership.nl / indicators