Sharper than ever

Physicists from Kiel make molecular vibrations more detectable

Microscopic image
© Jan Homberg

In this microscope image the lead phthalocyanine molecules on a superconducting lead surface appear as four-leaf clovers. The vibrations of these molecules were studied with the new method.

In molecules, the atoms vibrate with characteristic patterns and frequencies. Vibrations are therefore an important tool for studying molecules and molecular processes such as chemical reactions. Although scanning tunnelling microscopes can be used to image individual molecules, their vibrations have so far been difficult to detect. Physicists at Kiel University (CAU) have now invented a method with which the vibration signals can be amplified by up to a factor of 50. Furthermore, they increased the frequency resolution by far. The new method will improve the understanding of interactions in molecular systems and to further develop simulation methods. The research team has now published the results in the journal Physical Review Letters.

The discovery by Dr. Jan Homberg, Dr. Alexander Weismann and Prof. Dr. Richard Berndt from the Institute of Experimental and Applied Physics, relies on a special quantum mechanical effect, the so-called inelastic tunnelling. Electrons that pass through a molecule on their way  from a metal tip to the substrate surface in the scanning tunnelling microscope can release energy to the molecule or take it up from it. This energy exchange occurs in portions determined by the properties of the respective molecule.

Normally, this energy transfer happens only rarely and is therefore difficult to measure. In order to amplify the measurement signal and simultaneously achieve a high frequency resolution, the team of the CAU used a special property of molecules on superconductors they had previously discovered: suitably arranged, the molecules show a state in the spectra that appears needle-shaped, very high and extremely sharp -- the so-called Yu-Shiba-Rusinov resonance. The experiments were supported by theoretical work of Troels Markussen from the software company Synopsis in Copenhagen.

The article was highlighted as an Editors' Suggestion.

Preview

Please note: Once you watch the video, data will be transmitted to Youtube/Google. For more information, see Google Privacy.

The animated simulation shows the typical vibration patterns of two lead phthalocyanine molecules (above: top view, bottom: view from the side). The size of the deflections of the atoms is strongly exaggerated for a better recognition.
© Jan Homberg, Alexander Weismann

 

Original publication:

Resonance-Enhanced Vibrational Spectroscopy of Molecules on a Superconductor. J. Homberg, A. Weismann, T. Markussen, R. Berndt. Phys. Rev. Lett. 129, 116801 (2022). DOI: 10.1103/PhysRevLett.129.116801 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.116801

 

 

Scientific Contact:

Prof. Dr. Richard Berndt
Surface Physics
Institute of Experimental and Applied Physics
+49 431 880-3946
berndt@physik.uni-kiel.de

 

 

Two men at an instrument
© Julia Siekmann, Uni Kiel

Dr. Alexander Weismann (left) and Dr. Jan Homberg investigate vibrating molecules in a scanning tunnelling microscope at Kiel University, which allows particularly precise experiments.

Microscopic image
© Jan Homberg

In this microscope image the lead phthalocyanine molecules on a superconducting lead surface appear as four-leaf clovers. The vibrations of these molecules were studied with the new method.

Model image
© Jan Homberg

The model shows the molecular arrangement on a lead substrate.