CAU - Universität Kiel
Sie sind hier: StartseitePressePressemeldungenNr. 35 / 2015

Pressemeldung Nr. 35/2015 vom 11.02.2015 | RSS | zur Druckfassung | Suche

Tunnelnde Elektronen möglicher Datenspeicher der Zukunft


Forschende haben unter Federführung der Christian-Albrechts-Universität zu Kiel (CAU) einen neuen Weg entdeckt, extrem schnelle und energieeffiziente Datenspeicher zu entwickeln. Dazu nutzten sie sogenannte quantenmechanische Tunnelkontakte. Hierbei können Elektronen durch eine dünne Barriere hindurchtunneln. Die unterschiedlichen elektrischen Widerstände, die bei verschieden hoher Spannung entstehen, lassen sich als Digitalpaar „0“ und „1“ abspeichern. Die Studie wurde kürzlich vom renommierten Fachjournal Nature Communications veröffentlicht. Beteiligt waren auch Wissenschaftlerinnen und Wissenschaftler des Forschungszentrums Jülich, der Universität Regensburg, des russischen Ioffe Instituts Sankt Petersburg und des koreanischen Instituts für Wissenschaft und Technologie (KIST).

Tunnelkontakte sind aufgebaut wie elektronische Kondensatoren. Sie bestehen aus zwei Metallplatten (Elektroden) und einem Dielektrikum, das heißt einer nicht leitfähigen Zwischenschicht. Ein wesentlicher Unterschied zwischen herkömmlichen Kondensatoren und Tunnelkontakten ist, dass das Dielektrikum im Tunnelkontakt nur wenige Atomlagen (etwa ein Nanometer) dünn ist. Die Dicke eines Dielektrikums entspricht damit in etwa der Wellenlänge der Elektronen in den angrenzenden Metallelektroden. Legt man nun eine elektrische Spannung an ein solches Bauelement an, so können die Elektronen durch dieses Dielektrikum tunneln. „Elektronen können sich wie Teilchen oder Wellen verhalten. Das erlaubt es ihnen, die Barriere zu überwinden, wie eine Welle, die herüberschwappt“, erklärt Dr. Adrian Petraru aus der Kieler Arbeitsgruppe Nanoelektronik das Wirkungsprinzip.

Zu einem Speicher macht den Tunnelkontakt aber erst die Wahl der Barriere zwischen den Elektroden: „Aus purer Neugier wollten wir wissen, welchen Effekt ein ferroelektrisches Material auf so ein Bauteil hat“, sagt Professor Hermann Kohlstedt, Leiter der Kieler Arbeitsgruppe. Solche Stoffe haben positive und negative Ladungen an ihren Grenzflächen, die durch eine elektrische Spannung umgepolt werden können. Fließt der Strom nicht mehr, bleibt der neue Ladungszustand trotzdem erhalten. Die unterschiedlichen Polarisationen bei verschieden hohen Spannungen bestimmen, wie viel Strom durch den Tunnelkontakt fließt.

Die Forschenden beobachteten, dass Gold und Kupfer als Elektroden besonders hohe Widerstandsverhältnisse erreichten. Die beiden Widerstände bilden das Digitalpaar ‚0‘ und ‚1‘ und somit ein elementares Speicherbit. „Da die Polarisation der Barriere zwischen den Elektroden gespeichert wird, selbst wenn keine Spannung angelegt wird, handelt es sich um einen nicht-flüchtigen Speicher, wie etwa eine Festplatte oder CD“, sagt Kohlstedt.

Originalpublikation
Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions. Rohit Soni, Adrian Petraru, Paul Meuffels, Ondrej Vavra, Martin Ziegler, Seong Keun Kim, Doo Seok Jeong, Nikolay A. Pertsev, Hermann Kohlstedt. Nature Communications 48/2014. DOI: 10.1038/ncomms641

Es stehen Fotos/Materialien zum Download bereit:
Bitte beachten Sie dabei unsere ► Hinweise zur Verwendung

Zum Vergrößern anklicken

Dr. Rohit Soni (links) und Dr. Adrian Petraru erzeugen extrem dünne ferroelektrische Tunnelbarrieren mit Laserstrahlung (im Bild zu sehen ist eine Pulsed Laser Depositionsanlage).
Foto/Copyright: AG Nanoelektronik

Foto zum Herunterladen:
www.uni-kiel.de/download/pm/2015/2015-035-1.jpg


Kontakt
Prof. Dr. Hermann Kohlstedt
Christian-Albrechts-Universität zu Kiel
Institut für Elektrotechnik und Informationstechnik
Tel.: 0431/880 6075
E-Mail: hko@tf.uni-kiel.de



Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: ► presse@uv.uni-kiel.de
Text / Redaktion: Denis Schimmelpfennig