WATER AND FEED INTAKE IN DAIRY COWS –
MODEL EVALUATION AND POTENTIAL FOR
HEALTH MONITORING

Dissertation
zur Erlangung des Doktorgrades
der Agrar- und Ernährungswissenschaftlichen Fakultät
der Christian-Albrechts-Universität zu Kiel

vorgelegt von

Master of Science

EWALD KRAMER
aus Dorenborg, Ostfriesland

Dekan: Prof. Dr. Uwe Latacz-Lohmann
Erster Berichterstatter: Prof. Dr. J. Krieter
Zweiter Berichterstatter: Prof. Dr. G. Thaller

Tag der mündlichen Prüfung: 09. Februar 2009

Table of contents:

General Introduction .. 1

CHAPTER ONE:

Relationship between water intake, dry matter intake and daily milk yield on a German research farm.. 5

CHAPTER TWO:

Analysis of water intake, dry matter intake and daily milk yield using different error covariance structures .. 17

CHAPTER THREE:

Analysis of water intake and dry matter intake using different lactation curve models .. 39

CHAPTER FOUR:

Lameness and mastitis detection in dairy cows by application of Fuzzy Logic .. 59

General Discussion .. 75

General Summary .. 83

Zusammenfassung.. 87
General Introduction

Water is one of the most important foodstuffs of a dairy cow – the average amount of 87% water in 1 kg of milk may confirm this thesis (Winchester and Morris, 1956). To ensure good animal health, performance and welfare status, a sufficient supply of water is essential (Murphy et al., 1983). Furthermore, automatical measuring of water intake and also feed intake has started to be established in diverse test stations and dairy research farms (Coffey et al., 2002, Hüttmann, 2007), whereas the trait milk yield has already been recorded automatically on the majority of farms.

In the future, water and feed intake will become more important for dairy management due to their link to the health status of the cow (Lukas et al., 2008) as well as for dairy breeding because of their relationship to the energy status of the cow (Coffey et al., 2002). In addition, in times of increasing costs for feed concentrates it is imaginable to include the trait feed intake into future dairy breeding programmes. Nevertheless, there are only a few sources published in the literature regarding the relationship between water intake, feed intake and milk yield. Generally, random regression models have been postulated to analyse daily yield traits such as milk yield or dry matter intake in order to detect the potential change in the dependencies of these traits within the course of lactation (Koenen and Veerkamp, 1998, Veerkamp and Thompson, 1999). Thus, the aim of Chapter One was to analyse the general relationship between the traits water intake, feed intake and milk yield and to establish whether the relationships remained constant during the course of lactation. To do this, fixed and random regression models were used.

Furthermore, the model analysis of daily and hence repeated measures of traits in cows such as milk yield, milk ingredients, water intake and feed intake are becoming more important, since repeated measures are assumed not to be independent and thus they are considered to be autocorrelated (Littell et al., 1998, Littell et al., 2006). According to this, Stamer (1995) found moderate autocorrelations between repeated measures of daily yields of dry matter intake. However, in order to obtain valid statistical inference and correct variance components, the use of applicable error covariance structures is necessary to achieve the best model fit (Bonham and Reich, 1999, Sawalha et al., 2005, König et al., 2006, Rosário et al., 2007). For this purpose, the aim of the Chapter Two was to compare fixed and random regression models with several error covariance structures. Different model fit statistics were used to select an appropriate covariance model best matching the autocorrelation pattern. Finally, the effect of
model choice on statistical inference was illustrated on the basis of two model variants with the best and inferior fit, respectively.

With regard to correct statistical inference, the use of a proper lactation curve model is also crucial (van der Werf, 2001). Generally, modelling lactation curves has been a frequently discussed topic in the literature for the trait milk yield in contrast to water or feed intake (e.g. Wood, 1967, Guo and Swalve, 1995, van der Werf, 2001, Silvestre et al., 2006). Accordingly, the aim of the Chapter Three was to analyse daily water and feed intake measurements with different lactation curve models. In a first step, the best function for the average lactation curve was evaluated and chosen as the basis for the second step, the evaluation of the best function to model the cow-specific lactation curve.

After the evaluation of the correct model for the analysis of water and feed intake the aim of the last chapter was to establish a relationship between amongst others water and feed intake and the cow’s health status. According to this, Lukas et al. (2008) reported that a case of mastitis or lameness significantly reduces a cow’s water and dry matter intake. Furthermore, González et al. (2008) indicated differences in feeding behaviour between healthy cows and cows with lameness within the 30 days before the disease occurred. Hence, in Chapter Four a fuzzy logic model was developed to detect lameness and mastitis automatically. For this purpose, amongst others the potential input variables water and dry matter intake and also certain parameters regarding the animals’ behaviour – such as number of visits at the feeding troughs and feeding time – were used in order to assess whether they could serve as alternative input parameters for disease detection models in contrast to parameters obtained from established sensor technologies.

References

Chapter One:

Relationship between water intake, dry matter intake and daily milk yield on a German research farm

E. Kramer¹, E. Stamer², K. Mahlkow³, W. Lüpping³, J. Krieter¹

¹Institute of Animal Breeding and Husbandry
 Christian-Albrechts-University
 D-24118 Kiel, Germany

²TiDa Tier und Daten GmbH, D-24259 Westensee/Brux, Germany

³Chamber of Agriculture Schleswig-Holstein, D-24327 Blekendorf, Germany

Published in Livestock Science 115: 99-104
Abstract

The aim of the present study was to investigate the relationship between milk yield, water and dry matter intake and to clarify whether these relationships remained constant over the stages of lactation. Data recording was performed on the dairy research farm Futterkamp of the Chamber of Agriculture Schleswig-Holstein. A dataset of about 39,000 observations from 225 Holstein cows was used. Average milk yield, water and dry matter intake were 34.9, 84.3 and 20.3 kg, respectively. Estimations of variance components were accomplished by applying linear mixed Fixed Regression (FR) and Random Regression (RR) models. Repeatabilities with the FR Model were assessed at 0.76 for milk yield, 0.41 and 0.34 for water and dry matter intake and after applying the RR Model they changed during the lactation to 0.79 - 0.92, 0.46 - 0.52 and 0.43 - 0.50, respectively. Correlations with the FR Model between milk yield and water and dry matter intake and between water and dry matter intake were 0.73, 0.59 and 0.73 respectively, and after applying the RR Model they ranged in the course of lactation between 0.13 and 0.84, 0.48 and 0.93, and 0.76 and 0.82, respectively. Hence, variance components of these traits differed during lactation. Thus the use of RR models must be emphasised to analyse these traits.

Keywords: dairy cow, water intake, dry matter intake, correlation, Fixed Regression, Random Regression

Introduction

Water is well known as a dairy cow’s most important foodstuff – this fact being not least confirmed by an average amount of 87% of water in 1 kg of milk (Winchester and Morris, 1956). A sufficient supply of water is essential to avoid negative effects on animal health, performance and welfare (Murphy, 1992). Despite this there are only a few sources published in literature regarding the relationship between water intake, dry matter intake and milk yield, respectively. Several authors (Koenen and Veerkamp, 1998, Veerkamp and Thompson, 1999) have shown that traits which are related to the energy status of the cow, e.g. milk yield and dry matter intake, should be investigated as a function of lactation stage. It was assumed that the use of means over lactation might not accurately reflect all genetic (co)variation. These authors postulated the use of Random Regression (RR) models to analyse test day yields such as milk yield or dry matter intake in order to detect the potential change in the dependencies of these traits within the course of lactation. The aim of this research was to analyse the relationship of the traits water intake, dry matter intake and milk yield, respectively. The
second objective was to establish whether the relationships remained constant during the course of lactation. To do this, two different models – the Fixed and Random Regression (FR and RR) – were used.

Materials and Methods

Data
Data were recorded on the dairy research farm Futterkamp of the Chamber of Agriculture of Schleswig-Holstein between March 2005 and February 2007. The dairy herd was subdivided into a research and a production herd. During data collection, four feeding experiments were performed with the research herd. This herd with a frequently changing cow stock comprised of nearly 70 cows, divided into two feeding groups (Group A and Group B). Observations from about 39,000 cow-days were accumulated from 225 Holstein Friesian cows during the feeding experiments. The cows belonged to lactation numbers 1 to 9 and the days in milk included were between day 6 and day 230. The number of cows with two and more lactations was 64. Average milk yield, water and dry matter intake were 34.9, 84.3 and 20.3 kg, respectively. Between the feeding experiments, no observations were taken into account since no dry matter analyses were performed at that time and thus no dry matter intakes could be determined. Cows were milked twice daily and they obtained an ad libitum total mixed ration also twice daily. The feeding and the water troughs of the firm INSENSITEC were equipped with an individual cow identification system, so the cows were only able to pass the troughs one at a time. Each visit to the water and feeding trough was routinely recorded and the amounts of collected feed and water were accumulated to daily yields. Also, routinely, each milking was collected for the trait milk yield. Extreme values with about +/- 4 standard deviations (mainly for the traits water intake and dry matter intake) were excluded from the dataset for every trait. Thus, for the traits milk yield, water intake and dry matter intake, observations from 5.8 to 61.5 kg, 10.7 to 160.8 kg and 2.8 to 35.9 kg, respectively, were taken into account. In addition, 33 cows with a lower number of 40 observations in one trait and also two cows with records in only one of the three traits were excluded from the dataset. Furthermore, eight complete days could not be considered because of the exclusion of the first and the last day of a feeding experiment and three days due to general technical problems during the data collecting period. All in all, a total of about 4,500 records were excluded from further investigations. The lower number of records for the trait milk yield – in contrast to the traits water intake and dry matter intake – is due to gaps in the dataset, which resulted from particularly antibiotic treatments of the cows and their subsequent withdrawal periods.
Modelling data

Preliminary investigations were performed using the SAS (2005) software in order to analyse the fixed effects. The FR basis Model contained the significant fixed effects lactation number, group test day and lactation curve and the random effects animal and residual. The group test day was included as a common test day and feeding group effect in order to consider the possible influences of the different feeding rations. Lactations were divided into the three classes: first lactation, second lactation, and third and higher lactations. The lactation curves were modelled by the function according to Ali and Schaeffer (1987). The significance of fixed effects was tested by the F-test implemented in the MIXED Procedure in SAS (2005). The significance of differences in LSQ-means was adjusted with the Bonferroni-correction in the MIXED procedure of SAS (2005). With regard to preconditions for linear models, homogeneity of variance was checked by plots of the standardised residuals against the predicted values. Furthermore, the test for normality was applied for the residuals with frequency plots. All residuals were normally distributed and their variance was homogenous over the whole range of the predicted estimates.

RR Model:

\[y_{ijkl} = \text{LNR}_i + \text{GTT}_j + \sum_{m=1}^{4} b_{im}^{ijkl} (\text{DIM}) x_{ijklm}^{ijkl} (\text{DIM}) + \sum_{m=0}^{4} c_{km}^{ijkl} (\text{DIM}) x_{ijklm}^{ijkl} (\text{DIM}) + e_{ijkl} \]

with:
\(y_{ijkl} \) = observations of milk yield, dry matter intake and water intake
\(\text{LNR}_i \) = fixed effect of the \(i \)th lactation \((i = 1,\ldots,3)\)
\(\text{GTT}_j \) = fixed effect of the \(j \)th group test day \((j = 1,\ldots,1167 \text{ for milk yield}), \quad (j = 1,\ldots,1251 \text{ for dry matter intake}), \quad (j = 1,\ldots,1253 \text{ for water intake})\)
\(b_{im} \) = fixed regression effect of the \(i \)th lactation
\(c_{km} \) = RR coefficients for the cow effect of the \(k \)th cow \((k = 1,\ldots,225)\),
\(x_{ijklm}^{ijkl}(\text{DIM}) = 1 \),
\(x_{ijkl1}(\text{DIM}) = \frac{\text{DIM}}{305} \),
\(x_{ijkl2}(\text{DIM}) = \left(\frac{\text{DIM}}{305}\right)^2 \),
\(x_{ijkl3}(\text{DIM}) = \ln\frac{305}{\text{DIM}} \) und
\(x_{ijkl4}(\text{DIM}) = \left(\ln\frac{305}{\text{DIM}}\right)^2 \),
where \(\text{DIM} = \text{days in milk} \)
\(e_{ijkl} \) = random error

Two different models – the FR and RR – were used. The FR Model did not include the random regression coefficients for the cow effect of each cow in contrast to the above-specified RR Model. To answer the question of whether the variance components varied
depending on stage of lactation, the RR Model was used to model the cow-specific lactation curves applying the function according to Ali and Schaeffer (1987). The lactation was divided into seven sections. Lactation Section I included observations within a lactation number from lactation day 6 to 30, the lactation days 31-60, 61-90, 91-120, 121-150, 151-180, 181-230 were chosen for Sections II, III, IV, V, VI, VII, respectively. Within the traits the repeatabilities for every section and correlations between cow effects between the sections were estimated univariately. The estimation of the correlations between cow effects within a section and between the traits was performed bivariately.

For correlations between water and dry matter intake modelling the cow-specific lactation curves using the function according to Ali and Schaeffer (1987) did not converge, instead a polynomial of second degree was used. The formula for the RR polynomial of second degree Model was similar to the above-specified RR Model, with the exception being that the coefficients for the cow effect were monomials of second degree with

\[x_{ijkl0}(\text{DIM}) = 1, \quad x_{ijkl1}(\text{DIM}) = \frac{\text{DIM}}{305}, \quad x_{ijkl2}(\text{DIM}) = \left(\frac{\text{DIM}}{305}\right)^2. \]

For the FR and the RR Model, the variance components were estimated by REML using the software package VCE4 (Neumaier and Groeneveld, 1998) and VCE5 (Kovac et al., 2002), respectively.

Results

Lactation curves

The lactation curves of first lactation cows for the three traits after modelling with the parameter according to Ali and Schaeffer (1987) are shown in Figure 1.
Figure 1
Lactation curves for milk yield, dry matter intake and water intake for first lactation cows

The curves for primiparous cows showed similar tendencies for the three traits. For milk yield, the characteristic path of the curve with an increase – here to a maximum level of almost 30 kg at lactation day 40 – and a following slight decline was obvious. The course for water intake was similar, but at a higher level. In contrast to the trait milk yield, it took longer to achieve the maximum level with intakes of about 70 kg, but it also declined slightly in the further lactation. At lactation day 200, a moderate increase could be observed until lactation end. The trait dry matter intake increased along the whole lactation, starting from nearly 10 kg and ending at about 17 kg. The lactation curves of the multiparous cows differed from the curves of the primiparous cows (not presented). All three traits showed a higher increase at the beginning of lactation and also a greater decrease at the end of lactation and thus lower persistence than primiparous cows.

Variance components estimation with the FR Model
The results of the variance component estimation with the FR Model are presented in Table 1. The marginal number of animals (225 cows) allowed only the estimation of repeatabilities and correlations between cow effects instead of genetic parameters.
Table 1
Repeatabilities (diagonal) and correlations between cow effects for the traits milk yield, dry matter intake and water intake (standard errors in parentheses)

<table>
<thead>
<tr>
<th></th>
<th>Milk yield</th>
<th>Dry matter intake</th>
<th>Water intake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk yield (kg/d)</td>
<td>0.76 (0.01)</td>
<td>0.59 (0.03)</td>
<td>0.73 (0.02)</td>
</tr>
<tr>
<td>Dry matter intake (kg/d)</td>
<td>0.34 (0.02)</td>
<td>0.73 (0.02)</td>
<td></td>
</tr>
<tr>
<td>Water intake (kg/d)</td>
<td></td>
<td>0.41 (0.02)</td>
<td></td>
</tr>
</tbody>
</table>

Repeatabilities were between 0.34 and 0.76 for the three traits. The correlation between water intake and milk yield was 0.73, i.e. the same correlation between water intake and dry matter intake.
Variance components in the course of lactation

The results of the variance components estimation with the RR models are given in Table 2.

Table 2

Repeatabilities (diagonal) and correlations between cow effects for the traits at different stages of lactation

<table>
<thead>
<tr>
<th>Lactation section</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk yield (kg/d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0.79</td>
<td>0.68</td>
<td>0.51</td>
<td>0.54</td>
<td>0.55</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>0.79</td>
<td>0.95</td>
<td>0.87</td>
<td>0.76</td>
<td>0.65</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0.84</td>
<td>0.96</td>
<td>0.86</td>
<td>0.73</td>
<td>0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>0.85</td>
<td>0.95</td>
<td>0.85</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>0.88</td>
<td>0.96</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>0.87</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water intake (kg/d)							
I	0.46	0.80	0.65	0.56	0.50	0.48	0.47
II	0.47	0.95	0.83	0.71	0.64	0.63	
III	0.47	0.96	0.87	0.80	0.70		
IV	0.49	0.97	0.92	0.76			
V	0.51	0.98	0.82				
VI	0.48	0.90					
VII	0.52						

Dry matter intake (kg/d)							
I	0.49	0.71	0.52	0.43	0.39	0.40	0.43
II	0.46	0.93	0.78	0.62	0.55	0.60	
III	0.44	0.94	0.82	0.73	0.65		
IV	0.45	0.96	0.89	0.70			
V	0.44	0.97	0.75				
VI	0.43	0.86					
VII	0.50						

The repeatabilities estimated with the RR models at the different lactation sections were slightly higher than the repeatabilities which resulted from the whole lactation with the FR models (see above). For milk yield, repeatabilities increased continuously over the course of
lactation, beginning with \(w = 0.79 \) in Section I and rising up to \(w = 0.92 \) in the last section. For water intake and dry matter intake the repeatabilities were almost constant during the lactation periods. For all three traits the correlations between adjacent lactation sections were higher with \(r_c = 0.86 \) and 0.98. In the later stage of lactation the correlations declined with greater distance between the sections. The correlations between Section I and Section VII for milk yield, water and dry matter intake were \(r_c = 0.46, 0.47 \) and 0.43, respectively.

The results of the bivariate analysis for the correlations (cow effects) between the traits at the different stages of lactation are presented in Table 3.

Table 3
Correlations between cow effects between the traits at different stages of lactation

<table>
<thead>
<tr>
<th>Lactation section</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk yield – water intake</td>
<td>0.13</td>
<td>0.62</td>
<td>0.76</td>
<td>0.79</td>
<td>0.80</td>
<td>0.81</td>
<td>0.84</td>
</tr>
<tr>
<td>Milk yield – dry matter intake</td>
<td>0.48</td>
<td>0.65</td>
<td>0.75</td>
<td>0.74</td>
<td>0.66</td>
<td>0.75</td>
<td>0.93</td>
</tr>
<tr>
<td>Water intake – dry matter intake</td>
<td>0.82</td>
<td>0.81</td>
<td>0.80</td>
<td>0.79</td>
<td>0.78</td>
<td>0.77</td>
<td>0.76</td>
</tr>
</tbody>
</table>

There were moderate to high differences between the correlations estimated for the different lactation sections. The correlations between milk yield and water intake were small in the first section \((r_c = 0.13) \) and increased over the course of lactation up to \(r_c = 0.84 \) in Section VII. Similar tendencies were found between milk yield and dry matter intake with a moderate correlation of \(r_c = 0.48 \) in the first section and a high value of \(r_c = 0.93 \) in the last lactation section. Almost constant correlations in a range of \(r_c = 0.76 \) to 0.82 were estimated for water intake and dry matter intake over the lactation period.

Discussion

Lactation curves

The lactation curve for water intake showed a similar path to the curve for milk yield with only a shift in level, which was also observed by Murphy et al. (1983), who investigated factors affecting water consumption of multiparous cows in the first 16 weeks of lactation. The moderate increase in water intake at the end of lactation was not very meaningful since most of the cows had left the research groups at the end of lactation and only a few records entered the analyses at that time. For all traits, the curves of the multiparous cows differed from the curves of the primiparous cows with a greater increase at the beginning of lactation.
and lower persistence at the end of lactation. The similar paths of water intake and milk yield were again apparent and suggested an intense relationship between these traits.

Variance components estimation

Repeatabilities estimated with the FR Model ranged from \(w = 0.34 \) to 0.76 for the three traits. The estimated repeatabilities for milk yield were in line with the results published by Hüttmann et al. (2006). Lower repeatabilities for milk yield were found at \(w = 0.50 \) by van Tassell et al. (1999) – their dataset was much larger and included data from different dairy herds. For the repeatability of dry matter intake the results were in line with Hüttmann et al. (2006) but lower than the value of \(w = 0.60 \) for the trait net energy intake from roughage found by Svendsen et al. (1992). The lower values for the traits dry matter and water intake showed the higher impact of temporary environmental variance on these traits in contrast to the trait milk yield.

The correlations between cow effects estimated with the FR Model were between \(r_c = 0.59 \) and 0.73. Between dry matter intake and milk yield the value was in line with the genetic correlations given by Veerkamp (1998), on average at \(r_g = 0.60 \) in a review of different literature sources. The given correlation between water intake and dry matter intake of \(r_c = 0.73 \) was in agreement with investigations carried out by Murphy et al. (1983), Murphy (1992) and Meyer et al. (2004), who associated higher dry matter intake with increasing water intake.

The repeatabilities estimated with the RR models at the different lactation sections were slightly higher than the repeatabilities given by the FR models. For milk yield, repeatabilities increased during lactation, whereas they were almost constant for water and dry matter intake in the different lactation sections. Estimated repeatabilities in the course of lactation have been seldom published in literature. Strabel and Misztal (1999) assessed milk yield in Polish Black and White heifers and obtained a repeatability of \(w = 0.71 \), 0.62 and 0.61 at lactation days 30, 150 and 250, respectively. Thus in contrast to this investigation they only found a slight decrease in the repeatability during the course of lactation.

The correlations (cow effects) between Section I and Section VII for milk yield, water and dry matter intake were \(r_c = 0.46 \), 0.47 and 0.43, respectively. In the literature, no investigation into the relationship between observations at different stages of lactation for the trait water intake has been found. Our results for milk yield were lower than the genetic correlations of \(r_g = 0.78 \) and \(r_g = 0.62 \) for observations between the start and the later lactation found by Rekaya et al. (1999) and Veerkamp and Thompson (1999). For dry matter intake, our results were in
line with the literature regarding the fast decline in the correlations, but they were not in line with the level of the correlation between the beginning and end of lactation. Veerkamp and Thompson (1999) found a genetic correlation of $r_g = 0.24$ between the first and 15th week of lactation. This fast decline was in line with our results, because the correlation (cow effects) between the first section and Section IV had already been assessed at a moderate value of $r_c = 0.43$. Koenen and Veerkamp (1998) even estimated a genetic correlation of $r_g = -0.14$ between the first and the 25th week of lactation.

The correlations (cow effects) between the traits depending on stage of lactation showed moderate to great differences for the different lactation sections. Almost constant correlations over the lactation sections were estimated for water intake and dry matter intake. For water intake, no comparable values for the correlations between water intake and milk yield respectively dry matter intake are available in the literature. Veerkamp and Thompson (1999) assessed intensely altering genetic correlations between dry matter intake and milk yield in the course of lactation. These correlations varied from $r_g = -0.77$ in the first lactation week until $r_g = 0.39$ in the 15th lactation week. Hence, they assumed that the beginning and the end of the lactation were influenced by different genes. Koenen and Veerkamp (1998) and Veerkamp and Thompson (1999) emphasised using RR models since the time of the trait’s measurement during the lactation must be considered and therefore this is very important for the selection process. In addition, the results of this study showed changing correlations between cow effects within and across traits during the lactation. Thus it must be postulated that RR models should also be used for analyses of feeding experiments or generally for investigations of traits such as water intake, dry matter intake or milk yield.

Conclusion

Repeatabilities and correlations between cow effects, within traits and across traits, clearly changed during the different lactation stages. Thus it must be postulated that RR models should be used for analyses of traits such as water intake, dry matter intake or milk yield.

References

Hüttmann, H., Stamer, E., Junge, W., Thaller, G., Kalm, E., 2006. Feed intake and energy balance – investigations with intent to integrate the energy status of bull dams into the performance test station. 57th EAAP, Book of abstracts No. 12, p. 308.

Chapter Two:

Analysis of water intake, dry matter intake and daily milk yield using different error covariance structures

E. Kramer¹, E. Stamer², J. Spilke³ and J. Krieter¹

¹Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, D-24118 Kiel, Germany
²TiDa Tier und Daten GmbH, D-24259 Westensee/Brux, Germany
³Biometrics and Informatics in Agriculture Group, Martin-Luther-University, D-06108 Halle/Saale, Germany

Published in Animal 2: 1585-1594
Abstract

The aim of the present study was to investigate the daily measured traits milk yield, water and dry matter intake with fixed and random regression models added with different error covariance structures. It was analysed whether these models deliver better model fitting in contrast to conventional fixed and random regression models. Furthermore, possible autocorrelation between repeated measures was investigated. The effect of model choice on statistical inference was also tested. Data recording was performed on the Futterkamp dairy research farm of the Chamber of Agriculture of Schleswig-Holstein. A dataset of about 21,000 observations from 178 Holstein cows was used. Average milk yield, water and dry matter intake were 34.9, 82.4 and 19.8 kg, respectively. Statistical analysis was performed using different linear mixed models. Lactation number, test day and the parameters to model the function of lactation day were included as fixed effects. Different structures were tested for the residuals; they were compared for their ability to fit the model using the likelihood ratio test, Akaike’s and Bayesian’s information criteria.

Different autocorrelation patterns were found. Adjacent repeated measures of daily milk yield were highest correlated ($p_1 = 0.32$) in contrast to measures further apart, while for water intake and dry matter intake, the measurements with a lag of two units had the highest correlations with $p_2 = 0.11$ and 0.12. The covariance structure of TOEPLITZ was most suitable to indicate the dependencies of the repeated measures for all traits. Generally the most complex model, random regression with the additional covariance structure TOEPLITZ (4), provided the lowest information criteria. Furthermore, the model choice influenced the significance values of one fixed effect and therefore the general inference of the data analysis.

Thus, the random regression + TOEPLITZ (4) model is recommended for use for the analysis of equally spaced datasets of milk yield, water intake and dry matter intake.

Keywords: dairy cow, error covariance structure, model fit

Introduction

Today on many farms, automatically recording reliable milk yields from each milking is well-established. Furthermore, in diverse test stations or dairy research farms, water intake and feed intake are measured automatically and completely (e.g. Coffey et al., 2002, Hüttmann, 2007, Kramer et al., 2008). In the future, it is imaginable that cost-efficient and reliable sensor technology will automatically measure traits such as somatic cell score or fat and protein content of milk on practical dairy farms (Ordolff, 2005, Svennersten-Sjaunja et al., 2005,
DeLaval, 2008). For such datasets with repeated daily measures within cow it is assumed that the repeated measures are not independent and thus autocorrelated (Littell et al., 1998, Littell et al., 2006). Thus, for valid statistical inference and correct variance components, it is necessary to achieve the best model fit by using applicable error covariance structures (Bonham and Reich, 1999, Sawalha et al., 2005a, König et al., 2006, Rosário et al., 2007). Taking different covariance structures for the residuals of repeated measures into account Bonham and Reich (1999) estimated different variance components and found varying significances of least square means. Generally, it is assumed for repeated measures that measurements closer together have higher correlations than measurements with longer time between them (Littell et al., 2006). In the literature, there are only few results concerning existing autocorrelations and correlation patterns of daily milk yield, feed intake and water intake. Stamer (1995) found moderate autocorrelations between adjacent measures of daily yields of dry matter intake with $p_1 = 0.02$, but for measurements two units apart the author found a correlation of $p_2 = 0.10$. Hüttmann (2007) assessed the autocorrelation between adjacent milk yield measures on $p_1 = 0.30$ and for p_2 a correlation of 0.26 was found. According to this, it is assumed that random regression models, estimating covariance functions for the additive genetic and permanent environmental effect, but not accounting for a relationship between errors, are not yet adequate to analyse daily yields and thus, covariance structures for the residuals have to be applied (Littell et al., 2006, Mielenz et al., 2006). For this purpose fixed regression (FR) and random regression (RR) models with several candidate covariance structures were compared using different model fit statistics to select an appropriate covariance model. Fortunately, access to daily measurements of a dairy research farm enabled us to look at the suitability of such models. Thus, the daily measured traits milk yield, water and dry matter intake were analysed to find possible error covariance patterns. Finally, significance results for an included fixed effect are illustrated for different model variants in order to point up the consequences of considering a proper covariance structure.

Materials and Methods

Data

Data were recorded on the Futterkamp dairy research farm of the Chamber of Agriculture of Schleswig-Holstein. Period of recording was between March 2005 and April 2006. The dairy herd was subdivided into a research and a production herd. During data collection, three feeding experiments were performed with the research herd. This herd with a frequently changing cow stock comprising nearly 70 cows, divided into two feeding groups (Group A
Observations from about 21000 cow-days were accumulated from 178 Holstein cows during the feeding experiments. Between the feeding experiments dry matter intake was not recorded. Cows were milked twice daily and they were fed an ad libitum total mixed ration also twice daily. The feeding and the water troughs developed and installed by the company INSENTEC were equipped with an individual cow identification system; hence the cows were only able to pass the troughs one at a time. Each visit to the water and feeding trough was routinely recorded and the amounts of collected feed and water were accumulated to daily yields. Furthermore, each milking for the trait milk yield was recorded with the milk meters technology of the company DeLaval. Extreme values (mainly for the traits water intake and dry matter intake) that deviated more than ±4 s.d. were excluded from the dataset. Thus, for the traits milk yield, water intake and dry matter intake observations from 7.9 to 58.5 kg, 10.7 to 149.5 kg and 3.6 to 34.8 kg, respectively, were taken into account (Table 1), while the average amount of dry matter was about 45% during the data collecting period. In addition, 25 cows with less than 40 daily observations per trait and also two cows with records in only one of the three traits were excluded from the dataset. Furthermore, six complete days could not be considered because of the exclusion of the first and the last day of each feeding experiment and three days due to general technical problems during the data collecting period. A total of about 3500 records was excluded from further investigations. The lower number of records for the trait milk yield – in contrast to the traits water intake and dry matter intake – is due to gaps in the dataset, which resulted particularly from antibiotic treatments of the cows and their subsequent withdrawal periods.

The cows belonged to parities 1 to 9 and lactation days were between 6 and 230. The number of cows with observations from two lactations was 24.

Table 1
Means (\(\bar{x}\)), standard deviations (s) and range (minimum, maximum) of the three analysed traits

<table>
<thead>
<tr>
<th>Trait</th>
<th>n</th>
<th>(\bar{x})</th>
<th>s</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk yield (kg/d)</td>
<td>19,453</td>
<td>34.9</td>
<td>7.9</td>
<td>7.9</td>
<td>58.5</td>
</tr>
<tr>
<td>Water intake (kg/d)</td>
<td>21,285</td>
<td>82.4</td>
<td>18.8</td>
<td>10.7</td>
<td>149.5</td>
</tr>
<tr>
<td>Dry matter intake (kg/d)</td>
<td>21,282</td>
<td>19.8</td>
<td>3.9</td>
<td>3.6</td>
<td>34.8</td>
</tr>
</tbody>
</table>
Data analysis - Modelling of expected value structure

Preliminary investigations were performed using the SAS (2005) software in order to identify relevant fixed effects. Two different models – FR and RR – were used. Both model variants contained the fixed effect of lactation curve, which was calculated by average regression coefficients universally valid for all cows. Due to the fact that the coefficients are constant and fixed for all animals, the corresponding models are called FR models. In contrast, the RR models include additional regression coefficients. These are computed for every animal, which is usually considered as a random effect in the mixed model (van der Werf, 2001). These coefficients are therefore indicated as random regression coefficients and the corresponding models as RR models. Thus, RR models allow the estimation of cow-specific lactation curves (Schaeffer and Dekkers, 1994, Schaeffer, 2004). RR models are increasingly used for estimation of breeding values and commonly recommended for statistical analysis in this area (e.g. Koenen and Veerkamp, 1998, Veerkamp and Thompson, 1999). In addition, FR models were used to allow comparison of our results to results reported by others, that are mainly based on FR models. Both alternatives (FR, RR) contained the fixed effects parity, group test day and (as described) a function of the day of lactation and the random effects cow and error term. The group test day was included as a common test day within feeding group effect in order to consider the possible influences of the different feeding rations. Parities were divided into three classes: first lactation, second lactation, and third and higher lactations.

Model I (FR):

\[y_{ijkl} = \mu + \text{LNR}_i + \text{GTD}_j + \sum_{m=1}^{4} b_{im} \cdot x_{ijklm}^{(\text{DIM})} + c_k + e_{ijkl}, \]

where \(y_{ijkl} \) are the observations of milk yield, dry matter intake or water intake, \(\mu \) is the overall mean, \(\text{LNR}_i \) is the fixed effect of the \(i \)th parity class (\(i = 1, ..., 3 \)), \(\text{GTD}_j \) is the fixed effect of the \(j \)th test day within feeding group (\(j = 1, ..., 658 \)), \(b_{im} \) are the FR coefficients within the \(i \)th lactation with \(x_{ijkl1}^{(\text{DIM})} = (\text{DIM}/305) \), \(x_{ijkl2}^{(\text{DIM})} = (\text{DIM}/305)^2 \), \(x_{ijkl3}^{(\text{DIM})} = \ln(305/\text{DIM}) \) and \(x_{ijkl4}^{(\text{DIM})} = (\ln(305/\text{DIM}))^2 \), where DIM is the days in milk, \(c_k \) is the random effect of the \(k \)th cow (\(k = 1, ..., 178 \)), \(e_{ijkl} \) is the random error.

Model II (RR) was used to model cow-specific lactation curves by applying the function according to Ali and Schaeffer (1987).
Model II (RR):
\[y_{ijkl} = \mu + LNR_i + GTD_j + \sum_{m=1}^{4} b_{lm} x_{ijklm} (DIM) + \sum_{m=0}^{4} c_{km} x_{ijklm} (DIM) + e_{ijkl}, \]
where \(c_{km} \) are the RR coefficients within the kth cow (k = 1, ..., 178), where
\[x_{ijkl0} (DIM) = 1, \quad x_{ijkl1} (DIM) = (DIM/305), \quad x_{ijkl2} (DIM) = (DIM/305)^2, \quad x_{ijkl3} (DIM) = \ln(305/DIM) \quad \text{and} \quad x_{ijkl4} (DIM) = (\ln(305/DIM))^2. \]
Within the analysis of dry matter intake the numerical optimisation of the restricted likelihood did not converge. Instead, the following polynomial term of the second degree was used:
\[\sum_{m=0}^{2} c_{km} x_{ijklm} (DIM). \]

Modelling the lactation curves for the trait milk yield has been a frequently discussed topic in the literature (e.g. Wood, 1967, Grossman and Koops, 1988, Kirkpatrick et al., 1994, Jamrozik and Schaeffer, 1997, van der Werf, 2001, Sylvestre et al., 2006). López-Romero and Carabaño (2003) noted that functions frequently used for the modelling of lactation curves are those proposed by Ali and Schaeffer (1987) or Wilming (1987). In addition, also quite often used are Legrende Polynomials (e.g. Liu et al. (2006) for milk yield and Coffey et al. (2002) for the traits feed intake and energy balance). Sylvestre et al. (2006) hypothesised that this function is able to fit daily data superior than functions with less than five parameters such as Wilming (1987), Wood (1967) or Legrende polynomials of less than four degrees. Also for modelling of feed intake and energy balance amongst others, Woodford et al. (1984), de Vries et al. (1999) and Collard et al. (2000) used the Ali and Schaeffer function. Therefore, the function according to Ali and Schaeffer (1987) was chosen for the analysis of all three traits.

The significance of fixed effects was tested by the F-test implemented in the MIXED Procedure in SAS (2005). With regard to preconditions for linear models, homogeneity of variance was checked by plots of the standardised residuals against the predicted values. Additionally, these plots provided information about potential outliers. Furthermore, the frequency plots of the residuals were checked by visual inspection and confirmed the assumption of their normal distribution.

Modelling error covariance structures

Dependencies between the residuals of repeated yields of a cow can be modelled with covariance structures (Sawalha et al., 2005a and 2005b, Mielenz et al., 2006). In order to obtain basic knowledge about actual covariances between all residuals the complete
parameterised covariance structure UNSTRUCTURED should be estimated. It might then be possible to recognise underlying patterns. But this type of matrix is too complex, since all variances and covariances are different and then too large matrices would have to be calculated. According to Jennrich and Schluchter (1986) the number of estimatable parameters is $q = \frac{(T^* (T+1))}{2}$, where T is the length of the time series. With a maximum length of time series in our dataset of about 225 measures (lactation day 6 to 230), the number of parameters to estimate would arise to $q = 25425$. Of course this requires too much computational effort and is not applicable with our computing capacity. As a compromise, three minor complex alternatives of covariance structures were tested, the first-order autoregressive model (AR(1)), the spatial (exponential) structure (SP(EXP)) and the TOEPLITZ(4) model (TOEP(4)), which assume constant residual variance at the different stages of lactation. Estimation of heterogenous residual variances within these patterns was not possible, due to no positive definite Hessian matrices. To check the assumption of error variance homogeneity, the residual variances were estimated separately within three lactation stages (days in milk 30 to 70, 110 to 150 and 190 to 230) using the FR + TOEP(4) model. It should be indicated that the notation only gives the upper triangular part of the matrices.

i) First-order autoregressive model (AR(1))

$\text{Var}(e) = \sigma_e^2 \begin{bmatrix} 1 & p & p^2 & \ldots & p^{d-1} \\ 1 & p & \ldots & p^{d-2} \\ 1 & \ldots & \vdots \\ \vdots & \ddots & p \\ 1 & & & & 1 \end{bmatrix}$

Under the AR(1) model, the correlation between adjacent within-subject errors is p, regardless of whether the pair of observations is the 1st and 2nd, 2nd and 3rd, or (d-1)th and dth (Littell et al., 2006). For any pair of errors two units apart, the correlation is p^2 and in general, errors d units apart, have correlation p^d.

ii) Spatial (exponential) structure (SP(EXP))

For the SP(EXP) structure the correlations decline as a function of time. The function is defined as $g_{\text{exp}}(d) = e^{-\frac{d}{p}}$, where d is the temporal distance between two measurements at times t_1 and t_2, $d = |t_1 - t_2|$. The SP (EXP) structure models the covariance between t_1 and t_2 as $\text{Cov}[Y_{t_1}, Y_{t_2}] = \sigma_e^2 e^{-\frac{|t_1 - t_2|}{p}}$. The SP(EXP) type can be used for unequally spaced data with characteristic different distances between the measures. It is only a generalisation of the AR(1) type for unequally spaced data and it is expected to deliver the same information criteria as AR(1) when the data are equally spaced (Littell et al., 2006).
iii) TOEPLITZ model TOEP(4)

\[
\text{Var}(e) = \sigma_e^2 \begin{bmatrix}
1 & p_1 & p_2 & p_3 & 0 \\
1 & p_1 & p_2 & p_3 & 0 \\
1 & p_1 & p_2 & 0 & 1 \\
1 & p_1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1
\end{bmatrix}
\]

For TOEP(4), the number 4 is the number of the estimated parameters \(\sigma_e^2\) plus three covariance parameters. The TOEP(4) model is similar to the AR(1) model, because pairs of within-subject errors separated by a common lag have the same correlation. However, errors \(d\) units apart have correlation \(p_d\) instead of \(p^d\) (Littell et al., 2006).

In order to avoid biased results with application of AR(1) and TOEP(4) complete time series with equal distances between the observations (~equally spaced data) are recommended (SAS, 2005). Therefore, missing values (10% of the records for milk yield and 4% of the records for water and dry matter intake) were replaced by the mean value of the prior three-day period. It should be emphasised that replacing missing values is problematic and possibly biases the results. Otherwise, the corresponding error was assumed to be moderate due to the marginal number of replaced missing values. Nevertheless, comparing different error covariance structures for the new traits water intake and dry matter intake requires the replacing of missing values.

Criteria for the selection of the models

Model selection was based on the restricted maximum-likelihood principle (REML). The procedure MIXED in SAS (2005) provides by default different model selection criteria (Mielenz et al., 2006). Models, of which the former one could be reduced to a special case of the latter one, were compared by applying the likelihood ratio test (LRT), which is a statistical test of the quality of the fit of two hierarchically nested models. Those models are identical in their design matrices of the fixed model parameters. The LRT is calculated as the difference \(\Delta(-2\log L)\) of the two comparable models and approximates a chi-square distribution with \(\Delta q\) degrees of freedom, where \(q\) is the number of estimated covariance components of each model.

Models with different covariance structures for the repeated measures are not hierarchically nested. For the comparison of these models, the information criteria of Akaike (1973) (AIC, Akaike’s information criteria) and Schwarz (1978) (BIC, Bayesian’s information criteria) were used. These values take the number of estimated parameters into account and prefer less-complex model variants. For the decision, the model with the smallest values for AIC and
BIC have to be selected without making a statement about the underlying significance. In contrast, the LRT yields a significance test under the null hypothesis that the reduced model is correct. Thus, both information criteria on the one hand and the LRT on the other hand can lead to different results during the model selection process (Pitt et al., 2002).

In addition, the investigation of the impact of model choice on drawing inference from the data analysis was enclosed. Thus, the model with the best ability to fit was compared with a less-complex model by significance results for one fixed effect.

Results

Preconditions for linear mixed models

For all three traits the frequency plot of the residuals was visualised in order to detect deviations from a normal distribution. Additionally, homogeneity of variance of the residuals was judged by visual inspection of the plots of the standardised residuals against the predicted values. As an example, the frequency plot of the residuals (Figure 1a) and the plot of the standardised residuals against the predicted values (Figure 1b) obtained from Model I (FR) are given for the trait water intake. It was concluded that the residuals were normally distributed and that their variance was homogenous over the whole range of the predicted estimates. Most residuals were in the range of ±3 s.d. A total of 0.92% of all residuals were smaller than -3 s.d. and 0.26% of all residuals were greater than +3 s.d. Also for milk yield and dry matter intake normal distribution and variance homogeneity arose from the adequate plots (not presented).
Figure 1
Frequency plot (a) of the residuals and plots of the standardised residuals against the predicted water intake (b) after fitting the data with Model I
Lactation curves

In order to provide evidence about the modelling quality of the underlying function according to Ali and Schaeffer (1987), the lactation curves are shown in Figure 2. The curves were hardly affected by the applied model and the presented ones are obtained from Model I (FR) for primiparous cows and for the three traits.

![Figure 2](image)

Lactation curves for milk yield, dry matter intake and water intake for primiparous cows after fitting with Model I

For milk yield, the characteristic course of the curve with an increase at the beginning up to 50 days and a subsequent slight decline was as expected. The trajectory for water intake was similar, but at a higher level. In contrast to the trait milk yield, it took longer to achieve the maximum level, but it also declined slightly in the further lactation. In contrast, the trait dry matter intake increased along the whole lactation.

Comparison of FR and RR models with different error covariance structures

For the three traits, the residual variance, the restricted log likelihood values and information criteria of the different models are given in Table 2. The results for the alternatives AR(1) and SP(EXP) were exactly the same because of the application of equally spaced data as shown by Littell et al. (2006). Thus, the covariance structure SP(EXP) is not listed in Table 2. Within
a trait, all model variants except the FR + AR(1) model were hierarchically nested. The differences between these nested models were all classified as highly significant (p < 0.01) using the LRT. The results of the LRT and the information criteria AIC and BIC did not lead to different conclusions for the model selection.

Table 2
Estimated residual variance, restricted log likelihood and information criteria of the different models for all three traits

<table>
<thead>
<tr>
<th>Model</th>
<th>σ_e^2</th>
<th>q</th>
<th>-2RlogL</th>
<th>$\Delta(-2RlogL)$</th>
<th>d.f.</th>
<th>Δ(AIC)</th>
<th>Δ(BIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>109.45</td>
<td>2</td>
<td>160193</td>
<td>2097</td>
<td>17</td>
<td>2063</td>
<td>2008</td>
</tr>
<tr>
<td>FR + AR(1)</td>
<td>108.52</td>
<td>3</td>
<td>160133</td>
<td>2037</td>
<td>16</td>
<td>2005</td>
<td>1954</td>
</tr>
<tr>
<td>FR + TOEP(4)</td>
<td>108.26</td>
<td>5</td>
<td>159144</td>
<td>1048</td>
<td>14</td>
<td>1012</td>
<td>995</td>
</tr>
<tr>
<td>RR (AS)</td>
<td>98.16</td>
<td>16</td>
<td>158636</td>
<td>540</td>
<td>3</td>
<td>534</td>
<td>524</td>
</tr>
<tr>
<td>RR (AS) + AR(1)</td>
<td>97.79</td>
<td>17</td>
<td>158573</td>
<td>477</td>
<td>2</td>
<td>473</td>
<td>467</td>
</tr>
<tr>
<td>RR (AS) + TOEP(4)</td>
<td>98.75</td>
<td>19</td>
<td>158096</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>4.24</td>
<td>2</td>
<td>92336</td>
<td>2524</td>
<td>8</td>
<td>2509</td>
<td>2483</td>
</tr>
<tr>
<td>FR + AR(1)</td>
<td>4.29</td>
<td>3</td>
<td>92213</td>
<td>2401</td>
<td>7</td>
<td>2387</td>
<td>2365</td>
</tr>
<tr>
<td>FR + TOEP(4)</td>
<td>4.17</td>
<td>5</td>
<td>90883</td>
<td>1071</td>
<td>5</td>
<td>1061</td>
<td>1045</td>
</tr>
<tr>
<td>RR (p2)</td>
<td>3.77</td>
<td>7</td>
<td>90540</td>
<td>728</td>
<td>3</td>
<td>722</td>
<td>707</td>
</tr>
<tr>
<td>RR (p2) + AR(1)</td>
<td>3.76</td>
<td>8</td>
<td>90510</td>
<td>698</td>
<td>2</td>
<td>694</td>
<td>688</td>
</tr>
<tr>
<td>RR (p2) + TOEP(4)</td>
<td>3.78</td>
<td>10</td>
<td>89812</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk yield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>6.46</td>
<td>2</td>
<td>101022</td>
<td>13846</td>
<td>17</td>
<td>13812</td>
<td>13759</td>
</tr>
<tr>
<td>FR + AR(1)</td>
<td>6.81</td>
<td>3</td>
<td>90480</td>
<td>3304</td>
<td>16</td>
<td>3273</td>
<td>3222</td>
</tr>
<tr>
<td>FR + TOEP(4)</td>
<td>5.44</td>
<td>5</td>
<td>90445</td>
<td>3269</td>
<td>14</td>
<td>3241</td>
<td>3197</td>
</tr>
<tr>
<td>RR (AS)</td>
<td>3.66</td>
<td>16</td>
<td>91212</td>
<td>4036</td>
<td>3</td>
<td>4030</td>
<td>4021</td>
</tr>
<tr>
<td>RR (AS) + AR(1)</td>
<td>3.97</td>
<td>17</td>
<td>88286</td>
<td>1110</td>
<td>2</td>
<td>1106</td>
<td>1099</td>
</tr>
<tr>
<td>RR (AS) + TOEP(4)</td>
<td>3.70</td>
<td>19</td>
<td>87176</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIC = Akaike’s information criteria; BIC = Bayesian’s information criteria; FR = fixed regression; RR (AS) = random regression with the function of Ali and Schaeffer (1987); RR (p2) = random regression with polynomial of second degree; σ_e^2 = residual variance; q = number of covariance components, d.f. = degrees of freedom
For all traits, the classic FR model had the highest restricted log likelihood and the highest AIC and BIC values (where smaller is better), so that fitting was better for every alternatively tested model. In addition, modelling the cow-specific lactation curve with the RR model indicated much lower restricted log likelihood, AIC and BIC values for all traits. Furthermore, including different covariance structures to model the dependencies between repeated measures showed similar tendencies for water intake and dry matter intake in contrast to milk yield. For water intake and dry matter intake the FR + AR(1) model provided only a moderately, but significantly better fitting. In contrast to the FR + AR(1) model, the FR + TOEP(4) model provided much better information criteria for the traits water intake and dry matter intake. For milk yield the FR + AR(1) and the FR + TOEP(4) models delivered much better model fitting in contrast to the FR variant, but the AIC and BIC values were nearly the same for these two variants. The differences of quality of fit between the AR(1) and the TOEP(4) covariance structures were also found along with the RR models for the traits water and dry matter intake and even for milk yield. Comparing all model variants, the best fit was achieved with the most complex RR + TOEP(4) model.

Homogeneity of residual variance and correlations between residual effects
The residual variances and the correlations between the repeated measures within the different lactation stages are presented in Table 3. Hence, the assumption of homogenous residual variances can be checked. Due to the best fit, the RR + TOEP(4) model should have been chosen, but in order to avoid convergence problems with RR models due to the small number of included observations, the FR + TOEP(4) model was used instead.
Table 3
Estimated residual variance and correlations for the different lags at different stages of lactation after modelling with the FR + TOEP(4) Model

<table>
<thead>
<tr>
<th>Trait</th>
<th>Stage of lactation</th>
<th>σ^2_e Lag</th>
<th>Lag 1 (p<sub>1</sub>)</th>
<th>Lag 2 (p<sub>2</sub>)</th>
<th>Lag 3 (p<sub>3</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water intake</td>
<td>5 - 230</td>
<td>108.26</td>
<td>0.03</td>
<td>0.17</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>30 - 70</td>
<td>98.62</td>
<td>-0.04</td>
<td>0.16</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>110 - 150</td>
<td>102.24</td>
<td>0.00</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>190 - 230</td>
<td>108.86</td>
<td>-0.03</td>
<td>0.12</td>
<td>0.08</td>
</tr>
<tr>
<td>Dry matter intake</td>
<td>5 - 230</td>
<td>3.78</td>
<td>-0.05</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>30 - 70</td>
<td>3.75</td>
<td>-0.08</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>110 - 150</td>
<td>3.83</td>
<td>-0.06</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>190 - 230</td>
<td>3.75</td>
<td>-0.09</td>
<td>0.11</td>
<td>0.07</td>
</tr>
<tr>
<td>Milk yield</td>
<td>5 - 230</td>
<td>5.44</td>
<td>0.48</td>
<td>0.36</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>30 - 70</td>
<td>4.00</td>
<td>0.33</td>
<td>0.30</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>110 - 150</td>
<td>3.65</td>
<td>0.35</td>
<td>0.28</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>190 - 230</td>
<td>3.05</td>
<td>0.29</td>
<td>0.30</td>
<td>0.21</td>
</tr>
</tbody>
</table>

σ^2_e = residual variance

For water and dry matter intake, residual variance varied only marginally between the beginning, the middle and the end of the lactation in contrast to the estimates for the whole lactation. For milk yield, different estimates were found for the whole lactation ($\sigma^2_e = 5.44$) in contrast to the separate lactation stages ($\sigma^2_e = 4.00$, 3.65 and 3.05, respectively). The correlations between the adjacent repeated measures of water intake, dry matter intake and milk yield, estimated for the whole lactation, were $p_1 = 0.03$, -0.05 and 0.48, respectively. For measurements two units apart, the correlations were $p_2 = 0.17$, 0.12 and 0.36, respectively, while they were assessed on $p_3 = 0.12$, 0.10 and 0.21 for water intake, dry matter intake and milk yield measurements with a lag of three observations. The correlations estimated for the different stages of lactation differed only marginally in contrast to those estimated for the whole lactation, with the exception of p_1 and p_2 for milk yield. For the whole lactation, the correlation p_1 was 0.48 in comparison to $p_1 = 0.33$, 0.35 and 0.29 for the three different lactation stages.
Model choice and statistical inference

The influence of the model choice on the results of significance tests was proven by comparing the model with the best fit (RR + TOEP(4)) with the RR model without error covariance structures. In the case of the fixed effect parity, the inclusion of the error covariance structure TOEP(4) showed a clear influence on the accuracy of the inference (Table 4). For milk yield, the significance value of the global F-test levels altered with the consequence of another conclusion. Parity was not statistically significant \(p = 0.061 \) in the RR model, it was significant \(p = 0.004 \) in the other model.

Table 4
Significance values \((p) \) for the fixed effect parity and for the differences between LSM of parity levels dependent on trait and model

<table>
<thead>
<tr>
<th>Trait (model)</th>
<th>F-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk yield (RR)</td>
<td>0.061</td>
</tr>
<tr>
<td>Milk yield (RR + TOEP(4))</td>
<td>0.004</td>
</tr>
<tr>
<td>Water intake (RR)</td>
<td>0.302</td>
</tr>
<tr>
<td>Water intake (RR + TOEP(4))</td>
<td>0.217</td>
</tr>
<tr>
<td>Dry matter intake (RR)</td>
<td><0.001</td>
</tr>
<tr>
<td>Dry matter intake (RR + TOEP(4))</td>
<td><0.001</td>
</tr>
</tbody>
</table>

RR = random regression

Discussion

Lactation curves

The lactation curve for milk yield showed the characteristic course, which had been shown frequently before (amongst others Veerkamp and Thompson, 1999, Hüttmann, 2007). The lactation curve for water intake showed a path similar to the curve for milk yield with only a shift in level, which was also observed by Murphy et al. (1983). Similar lactation curves for dry matter intake were also found by Veerkamp and Thompson (1999) and Hüttmann (2007). The given course was similarly expected after inspecting the trajectory of the raw data. This is indeed not an evidence but an indication that the parameters according to Ali and Schaeffer (1987) are also suitable to model the lactation curves of the traits water intake and dry matter intake.
Comparison of FR and RR models with different error covariance structures

For all traits, the RR models had much lower information criteria in contrast to the classic FR models. Similar results were found by Hüttmann (2007) for daily milk yield and dry matter intake with different FR and RR models. With RR models, water intake, dry matter intake and milk yield dynamics are modelled separately for every lactation day, which leads to a more effective consideration of the underlying biology and therefore to much more precise results (van der Werf, 2001, Mielenz et al., 2006).

Inclusion of different error covariance structures along either FR or RR models again improved the values of the information criteria and thus the model fit for all three traits. But it seems that different covariance patterns are indicated for the three traits.

In detail for milk yield, model fit under the FR models was similar when comparing the AR(1) with the TOEP(4) pattern. The assumption of Littell et al. (2006) that adjacent daily measures are higher correlated than measures with lags of more units apart could be confirmed with both covariance structures. High dependencies between the repeated measures were found ($p_1 = 0.65, p_2 = (0.65)^2 = 0.42, p_3 = (0.65)^3 = 0.27$ with the FR + AR(1) model and $p_1 = 0.48, p_2 = 0.36, p_3 = 0.21$ with the FR + TOEP(4) model, respectively). The estimated correlations were similar and thus the differences between the patterns of the covariance structures had no effect. Along with the RR models clear differences between AR(1) and TOEP(4) were found. With the inspection of the corresponding correlations estimated for these model variants ($p_1 = 0.40, p_2 = (0.40)^2 = 0.16, p_3 = (0.40)^3 = 0.03$ with the RR + AR(1) model and $p_1 = 0.32, p_2 = 0.27, p_3 = 0.17$ with the RR + TOEP(4) model, respectively), it is obvious that with the RR + AR(1) model the exponential decline in the correlations is too fast.

In contrast, the correlations assessed with the RR + TOEP(4) model seem to be more realistic. Similar correlations ($p_1 = 0.30, p_2 = 0.23, p_3 = 0.13$) with a RR + TOEP(4) model for repeated milk intakes were found by Hüttmann (2007).

For dry matter intake and water intake, model fit was much better with the TOEP(4) model in contrast to the AR(1) model regardless of whether the FR or RR model was applied. The covariance structure AR(1) acts on the assumption that adjacent measures are higher correlated than those with more units between them (Littell et al., 1998, Littell et al., 2006). This seems to be the main reason as to why the AR(1) structure misrepresents the dependencies and patterns of the repeated measures of water and dry matter intake. Under the FR model, the AR(1) matrix valued the correlation for adjacent measures of dry matter intake and water intake at $p_1 = 0.08$ and 0.05. The corresponding correlations p_2 and p_3 were hence $(0.08)^2 = 0.0064$ and $(0.08)^3 = 0.000512$ for dry matter intake and $(0.05)^2 = 0.0025$ and
(0.05)^3 = 0.000125, which is almost equal to zero. With the TOEP(4) model the correlations were \(p_1 = -0.05, p_2 = 0.12 \) and \(p_3 = 0.10 \) for dry matter intake and \(p_1 = 0.03, p_2 = 0.17 \) and \(p_3 = 0.12 \) for water intake (see also Table 3). Thus it appears to be the case that measures with a lag of two units apart are the highest correlated and even for measures three units apart correlations do exist. The correlations for repeated dry matter intakes are in agreement with the investigations of Stamer (1995), who found under a FR + TOEP(3) model an autocorrelation between adjacent measures of \(p_1 = 0.02 \) and between measures two units apart of \(p_2 = 0.10 \), while the AR(1) model showed no autocorrelation between repeated measures. In addition, the AIC value was lowest for the variant with a TOEP(3) covariance structure. Hüttmann (2007) found under a RR + TOEP(4) model a similar correlation pattern with \(p_1 = 0.07, p_2 = 0.10 \) and \(p_3 = 0.07 \) for repeated measures of dry matter intake, too. This model variant also provided the by far best fitting ability in contrast to models with an underlying AR(1) covariance structure. Thus, under a TOEPLITZ matrix the correlation pattern between repeated measures of dry matter intake and also water intake is assumed to be estimated more precisely. Maybe the physiology of these two coherent traits (correlation between cow effects is \(r_c = 0.73 \) according to Kramer et al., 2008) underlies another more enduring biorhythm than from day to day and therefore adjacent repeated measures are not necessarily the highest correlated. Of course this is speculative.

Generally, according to the fitting ability, the most complex RR + TOEP(4) model has to be emphasised for the analysis of daily yields of milk intake, water and dry matter intake. This is in accordance with the investigations of Hüttmann (2007), who obtained the best goodness of fit with a TOEP(4) model for the traits milk yield, feed intake, energy balance and body weight.

Homogeneity of residual variance and correlations between residual effects

The residual variance of water and dry matter intake varied only marginally between the beginning, the middle and the end of the lactation in contrast to the estimates for the whole lactation. For milk yield, residual variance estimated for the whole lactation was different from those estimated for the separate lactation sections. Residual variance seems to vary in the course of lactation. Jamrozik and Schaeffer (1997) clearly found higher residual variances for milk yield in the first lactation days in contrast to the further lactation. This seems to be similar in the present study and can explain the higher residual variance estimated for the whole lactation (\(\sigma^2_e = 5.44 \)) in contrast to the separate sections (\(\sigma^2_e = 4.00, 3.65 \) and 3.05, respectively), because the first lactation days are not included in the first section (days in milk
30 to 70), but they are included for the whole lactation (days in milk 5 to 230). Furthermore, the correlations \(p_1 \), \(p_2 \) and \(p_3 \) estimated for the whole lactation differed only marginally from those correlations estimated for the separate lactation sections, exceptionally \(r_{e1} \) and \(r_{e2} \) for milk yield. Maybe this is also due to the inclusion of the first lactation days in the whole lactation, which seem to be somewhat different in contrast to the further lactation.

For water and dry matter intake, the almost constant residual variances and correlations in the lactation trajectory gave evidence that assuming constant residual variances with the different covariance structures was reasonable. Thus, the emphasis for the use of the RR + TOEP(4) for daily yield data of these traits can be made without having made incorrect assumptions. For milk yield, error covariance structures with supposed heterogenic residual variances would have delivered a more correct fit but are difficult to compute.

Model choice and statistical inference

The choice of the right model is very important for drawing the correct inference from the analysed data (van der Werf, 2001). Thus, the model with the best fit RR + TOEP(4) was compared with the RR model. For the fixed effect parity, the inclusion of the error covariance structure TOEP(4) showed a clear influence on the accuracy of the inference. Parity was not statistically significant \((p = 0.061) \) in the RR model, while it was significant \((p = 0.004) \) in the other model. Varying significance values among the applied model variants is very important for the interpretation of statistical analyses. Imagine feeding research where the effect of a feeding additive on milk yield is tested and the effect would be significant under the applied model while it would be no longer significant under the more correct model. The consequences of such biased results could cause large economic losses for dairy farms. Inclusion of error covariance structures influences also variance components of test day milk, fat and protein yields and test day somatic cell scores (Sawalha et al., 2005a) and also of daily voluntary milking frequency in an automatic milking system (König et al., 2006). The authors postulated the use of autoregressive error covariance structures for such data in order to prevent bias in heritabilities, because models without error covariance structures seem to overestimate the heritabilities. Similar conclusions in another research area were indicated by Bonham and Reich (1999). These authors showed for autocorrelated data that inclusion of spatial autoregressive error covariance structure delivered the best linear unbiased estimates of parameters and also reduced the significance of differences between treatments of oil spills. Hence, in order to obtain preferable certain results it is always necessary to aspire to use the model with the best fit.
Practical implementation

To obtain correct statistical inference, the results emphasise the use of adequate error covariance structures with RR models for the analysis of daily yields such as milk yield, water intake and dry matter intake, respectively. With equally spaced datasets the use of TOEP(4) error covariance structure must be postulated. Under practical conditions, daily data (e.g. milk yield) provide probably cow time series with gaps due to technical bugs or diseases of cows. In this regard Mielenz et al. (2006) did not fill up the lacks of daily feed intake data. With such datasets they emphasised the use of an RR + SP(EXP) model. This type of covariance structure could be a compromise for practical implementation, because for all traits including this would be better than a complete omission of error covariance structures. Generally, it would be necessary for the future to investigate daily yield data of other traits with regard to the possible autocorrelation patterns.

Conclusion

The comparison of the conventional FR model and RR models with or without covariance structures for the repeated measures showed best model fitting with the most complex RR + TOEP(4) model for all traits. Autocorrelations between daily yields could be found and the covariance structure TOEP(4) was most suitable to indicate the dependencies of the repeated measures. The model choice influenced the significance values of the fixed effect parity and therefore the general inference of the data analysis. Thus, despite its complexity the RR + TOEP(4) model is recommended for use for analysis of equally spaced datasets of milk yield, water intake and dry matter intake.

References

Chapter Three:

Analysis of water intake and dry matter intake using different lactation curve models

E. Kramer1, E. Stamer2, J. Spilke3, G. Thaller1 and J. Krieter1

1Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, D-24118 Kiel, Germany
2TiDa Tier und Daten GmbH, D-24259 Westensee/Brux, Germany
3Biometrics and Informatics in Agriculture Group, Martin-Luther-University, D-06108 Halle/Saale, Germany

Submitted for publication in Journal of Dairy Science
Abstract

The objective was to evaluate six different lactation curve models for the daily measured traits water intake and dry matter intake. Data originated from the Futterkamp dairy research farm of the Chamber of Agriculture of Schleswig-Holstein. A dataset of about 23,000 observations from 193 Holstein cows was used. Average daily water and dry matter intake were 82.3 and 19.8 kg, respectively. The basic linear mixed model included the fixed effects parity and test day of feeding group. Additionally, six different functions were tested for the fixed effect of the lactation curve as well as for the individual (random) effect of the lactation curve. Furthermore, the autocorrelation between repeated measures was modelled with the Spatial (Power) covariance structure; model fit was evaluated by the likelihood ratio test, Akaike’s and Bayesian’s information criteria and additionally by analysis of the mean residual at different days in milk.

The Ali and Schaeffer function was most suitable to model the fixed effect of the lactation curve for both traits. The Legendre polynomial of order 4 delivered the best model fit for the random effects of lactation day. Applying the error covariance structure led to significant better model fit and indicated that repeated measures were autocorrelated. Generally, the most complex model, using the Ali and Schaeffer function and the Legendre polynomial of order 4 to model the average lactation and the cow-specific lactation curve and including additionally the error covariance structure Spatial (Power) provided the lowest information criteria. This model is recommended for the analysis of water intake and dry matter intake including missing observations in order to obtain estimation of correct statistical inference and valid variance components.

Keywords: dairy cow, lactation curve, water intake, dry matter intake, model fit

Introduction

Today on many test stations or dairy research farms, water intake and feed intake are measured automatically and completely (e.g. Coffey et al., 2002, Hüttmann et al., 2008, Kramer et al., 2008a). In the future, water and feed intake will become more important for dairy management due to their link to the cow’s health status (González et al., 2008, Lukas et al., 2008) as well as for dairy breeding because of their relationship to the cow’s energy status and the corresponding liability to diseases in the first part of lactation (Veerkamp and Thompson, 1999, Coffey et al., 2002, Hüttmann et al., 2008). Furthermore, in times of increasing costs for feed concentrates, it is imaginable that feed intake will be included in
future dairy breeding programmes. Unfortunately, recording daily feed intake is difficult and cost-intensive and hence only imaginable in test stations or research herds (Hüttmann, 2007). In contrast, individual recording of water intake is less expensive (Kramer et al., 2008a). Since the correlation between these traits has been estimated to be high ($r = 0.73$, Kramer et al., 2008a), water intake may be suitable to serve as an information trait for feed intake and might be included in dairy programmes instead of feed intake. Nevertheless, there are only a few sources in the literature regarding the analysis of water and feed intake with different models in order to obtain the one with the best model fit, although this is necessary for valid statistical inference and correct variance components (van der Werf, 2001, Sawalha et al., 2005, Kramer et al., 2008b). Today, random regression models (RR) are increasingly used for the estimation of breeding values and commonly recommended for statistical analysis in this area (e.g. Koenen and Veerkamp, 1998, Veerkamp and Thompson, 1999, Coffey et al., 2002). They allow the estimation of cow-specific lactation curves with additional random regression coefficients (Schaeffer and Dekkers, 1994, Schaeffer, 2004) in contrast to conventional fixed regression models (FR), which only contain the fixed effect of lactation curve estimated with average regression coefficients universally valid, and thus are fixed for all cows (van der Werf, 2001). In a previous study, Kramer et al. (2008a) analysed the relationship of water and feed intake in the course of lactation. They used the estimated parameters of the function of Ali and Schaeffer (1987) for both the fixed and random regression coefficients in order to model the average and the cow-specific lactation curves. In the German national genetic evaluation of milk yield, the Wilmink function (1987) is used to model the fixed regression coefficients on day of lactation and the Legendre polynomial of order 2 to model the random regression coefficients on day of lactation (VIT, 2008). Generally, modelling lactation curves has been a frequently discussed topic in the literature for the trait milk yield in contrast to water or feed intake (e.g. Wood, 1967, Guo and Swalve, 1995, van der Werf, 2001, Silvestre et al., 2006).

The objective of the present study was to analyse daily water and dry matter intake measurements with different lactation curve models. In doing so 1) the best function for the average lactation curve was evaluated and chosen as the basis for 2) the evaluation of the best (co)variance function to model the cow-specific lactation curve. Finally, the model with the best fit is presented at the end of the model selection process and preferably, this model is emphasised for general use.
Material and Methods

Data
Data were recorded on the Futterkamp dairy research farm of the Chamber of Agriculture of Schleswig-Holstein. The period of recording was between March 2005 and April 2006. The dairy herd was subdivided into a research and a production herd. During data collection, three feeding experiments were performed. The research herd with a frequently changing cow stock comprising nearly 70 cows, was divided into two feeding groups (Group A and Group B). Nearly 23,000 cow-days were accumulated from 193 Holstein cows belonging to the parities 1 to 9. Lactation days were between 6 and 230. Complete lactation length could not be recorded, because most of the cows had already left the feeding groups at lactation day 230. 23 cows had observations in two lactations. Between the feeding experiments dry matter intake was not recorded. Cows were milked twice daily and they were fed an ad libitum total mixed ration also twice daily. The feeding and the water troughs developed and installed by the company INSENTEC were equipped with an individual cow identification system; hence the cows were only able to pass the troughs one at a time. Each visit to the water and feeding trough was routinely recorded and the amounts of collected feed and water were accumulated to daily yields. Extreme values that deviated more than ±4 s.d. were excluded from the dataset. Thus, for the traits water intake and dry matter intake observations from 10.7 to 155.6 kg and 3.8 to 34.8 kg, respectively, were taken into account (Table 1), while the average amount of dry matter was about 45% during the data collecting period. In addition, only lactations with at least 15 test days were considered. Furthermore, the first and the last day of each feeding experiment were excluded and 3 days due to general technical problems. All in all, a total of 800 records (3.4% of all records) were omitted from data analysis.

Table 1
Number of observations (n), missing observations (m.o.), means (\(\bar{x}\)), standard deviations (s) and range (minimum, maximum) of the two analysed traits

<table>
<thead>
<tr>
<th>Trait</th>
<th>n</th>
<th>m.o.</th>
<th>(\bar{x})</th>
<th>s</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water intake (kg/d)</td>
<td>22,660</td>
<td>468</td>
<td>82.3</td>
<td>19.0</td>
<td>10.7</td>
<td>155.6</td>
</tr>
<tr>
<td>Dry matter intake (kg/d)</td>
<td>22,624</td>
<td>496</td>
<td>19.8</td>
<td>4.0</td>
<td>3.8</td>
<td>34.8</td>
</tr>
</tbody>
</table>

Data analysis
Preliminary investigations were performed using the SAS (2005) software in order to analyse the fixed effects. The FR basis model contained the significant fixed effects parity, group test
day and lactation curve and the random effect residual. The group test day was included as a common test day and feeding group effect in order to consider the possible influences of the different feeding rations. Parity was divided into three classes: first parity, second parity, and third and higher parities.

Model I (FR):

\[y_{ijl}(\text{DIM}) = \mu + P_i + \text{GTD}_j + f_{iw}(\text{DIM}) + e_{ijl}, \]

where \(y_{ijl} \) are the observations of water intake or dry matter intake, \(\mu \) is the overall mean, \(P_i \) is the fixed effect of the \(i \)th parity class (\(i = 1, ..., 3 \)), \(\text{GTD}_j \) is the fixed effect of the \(j \)th test day within feeding group (\(j = 1, ..., 664 \)), \(f_{iw}(\text{DIM}) \) describes six functions (\(w = 1, ..., 6 \)) to model the \(i \)th lactation curve, where \(\text{DIM} \) is the days in milk, \(e_{ijl} \) is the random error.

In a first step the fixed effect of average lactation curve was modelled by the following six functions of days in milk. These functions were chosen because they are commonly accepted and well established in the literature for modelling lactation curves of different traits.

1) GS (Guo and Swalve, 1995):
 \[f_{i1}(\text{DIM}) = a_{1i} + a_{2i} \times (\text{DIM})^{0.5} + a_{3i} \times \ln(\text{DIM}), \]

2) Wi (Wilmink, 1987):
 \[f_{i2}(\text{DIM}) = a_{1i} + a_{2i} \times \text{DIM} + a_{3i} \times e^{-0.05 \times \text{DIM}}, \]

3) Lg2 (Legendre polynomial of 2\(^{nd}\) order (Brotherstone et al., 2000))
 \[f_{i3}(\text{DIM}) = a_{1i} + a_{2i} \times z + a_{3i} \times 0.5 \times (3z^2 - 1), \]

4) Lg3 (Legendre polynomial of 3\(^{rd}\) order (Brotherstone et al., 2000))
 \[f_{i4}(\text{DIM}) = a_{1i} + a_{2i} \times z + a_{3i} \times 0.5 \times (3z^2 - 1) + a_{4i} \times 0.5 \times (5z^3 - 3z), \]

5) Lg4 (Legendre polynomial of 4\(^{th}\) order (Brotherstone et al., 2000))
 \[f_{i5}(\text{DIM}) = a_{1i} + a_{2i} \times z + a_{3i} \times 0.5 \times (3z^2 - 1) + a_{4i} \times 0.5 \times (5z^3 - 3z) + a_{5i} \times 0.125 \times (35z^4 - 30z^2 +3), \]

6) AS (Ali and Schaeffer, 1987)
 \[f_{i6}(\text{DIM}) = a_{1i} + a_{2i} \times (\text{DIM}/305) + a_{3i} \times (\text{DIM}/305)^2 + a_{4i} \times \ln(305/\text{DIM}) + a_{5i} \times (\ln(305/\text{DIM}))^2, \]
 with \(z = -1 + 2 ((\text{DIM} - 5)/(230 - 5)) \) and \(\text{DIM} = \) days in milk.

In order to check homogeneity of residual variance along the whole lactation period the average residual obtained with each FR submodel was plotted against the lactation day. The function 1, 2, ..., or 6, which delivered the best model fit, was chosen as the basis for the RR model (Model II), i.e. this function was chosen to model the average lactation curve under the
RR model. As the second step, modelling the cow-specific lactation curves was carried out again by applying the functions 1 to 6. Hence, Model II differed from Model I in the case that the six functions 1 to 6 were used to describe the RR effect of the kth cow (k = 193), which encompasses both the animal genetic and the permanent environmental effect. Furthermore in contrast to Model I, heterogenous residual variance was assumed across the three parity classes and the Spatial (Power) covariance structure (SP(POW)) for the residuals was applied with Model II. This was due to the fact that datasets with repeated daily measures within cow are assumed to contain dependent and thus autocorrelated repeated measures (Littell et al., 1998, Littell et al., 2006). For this purpose dependencies between the residuals of repeated yields can be modelled with covariance structures (Sawalha et al., 2005, Mielenz et al., 2006, Kramer et al., 2008b). In a previous study, Kramer et al. (2008b) found autocorrelated residuals of daily water and feed intake and they emphasised the use of a Spatial covariance structure for datasets including missing values. Thus, in this dataset the assumed dependencies between the residuals of water and feed intake were modelled with the SP(POW) covariance structure, which assumes constant residual variance at the different stages of lactation. In accordance to this, Kramer et al. (2008b) showed that residual variance of water and dry matter intake was almost constant during the lactation. For the SP(POW) structure the correlations \(r_e \) decline as a function of time. The function is defined as \(g(d) = r_e^d \), where \(d \) is the temporal distance between two measurements at times \(t_1 \) and \(t_2 \), \(d = |t_1 - t_2| \). The SP(POW) structure models the covariance between \(t_1 \) and \(t_2 \) as \(\text{Cov} [Y_{t1}, Y_{t2}] = \sigma_e^2 \cdot r_e^{-d} \). The SP(POW) type can be used for unequally spaced data with characteristically different distances between the measures. However, it should be noted that the better the RR models fit the data, the lower the correlations between the residuals should actually be. Hence as a last step, for both traits the model with the best fit was compared to the same model except the error covariance structure in order to possibly confirm the estimated correlations between the residuals and thus to verify the necessity of the assumption of the SP(POW) error covariance structure.

Criteria for the selection of the models

Model selection under testing the different FR models was based on maximum likelihood principle (ML). The procedure MIXED in SAS (2005) provides by default different model selection criteria. Since two models including different fixed effects being compared, the information criteria are not comparable under the predetermined method in the MIXED procedure in SAS (2005), which is by default based on the restricted maximum-likelihood
principle (REML). Under the RR models model selection was based on REML estimation. Models, of which the former one could be reduced to a special case of the latter one, were compared by applying the likelihood ratio test (LRT), which is a statistical test of the quality of the fit of two hierarchically nested models (Littell et al., 2006). Those models are identical in their design matrices of the fixed model parameters. The LRT is calculated as the difference \(\Delta(-2\log L) \) of the two comparable models and approximates a chi-square distribution with \(\Delta q \) degrees of freedom, where \(q \) is the number of estimated covariance components of each model.

Submodels with the different functions for the fixed effect of average lactation curve or the different functions for the random cow effect used in the present study (except Lg2 – Lg4) are not hierarchically nested. For the comparison of these models, the information criteria of Hurvich and Tsai (1989) (AICC, Akaike’s information criteria corrected) and Schwarz (1978) (BIC, Bayesian’s information criteria) were used. These values take the number of estimated parameters into account and prefer less complex model variants. For the decision, the model with the smallest values for AICC and BIC have to be selected without making a statement about the underlying significance. In contrast, the LRT yields a significance test under the null hypothesis that the reduced model is correct. Thus, both information criteria on the one hand and the LRT on the other hand can lead to different results during the model selection process (Pitt et al., 2002).

Results

Lactation curves

For primiparous cows the lactation curves for the four functions GS, Wi, AS and Lg4 after fitting with the FR model are shown in Figure 1. The curves of the functions Lg2 and Lg3 were very similar to the Lg4 function. Therefore the Lg2 and Lg3 curves were omitted.

The lactation curves for primiparous cows were only marginally affected by the underlying function. For water intake, the functions Wi, GS and AS showed nearly the same trajectory. The Lg4 function differed slightly from the other three functions. At lactation day 200 a moderate increase could be observed for the AS and Lg4 functions. For dry matter intake all functions were very similar. The lactation curves of both traits for the multiparous cows characteristically differed from those of the primiparous cows indicating a higher increase at the beginning and also a greater decrease at the end of lactation (not presented). Additionally, only a marginal influence of the underlying function on the curves could be observed.
Lactation curves of water (a) and dry matter intake (b) for the functions of Wilmink (Wi), Guo and Swalve (GS), Ali and Schaeffer (AS) and the Legendre polynomial of order 4 (Lg4) – primiparous cows.
Comparison of different FR submodels to model the average lactation curve

For both traits, the residual variance, the number of fixed effects, the log likelihood values and information criteria of the different FR (sub)models are given in Table 2. Within a trait, only the variants FR (Lg2), FR (Lg3) and FR (Lg4) were hierarchically nested. The differences between these nested models were all classified as highly significant (p < 0.01) using the LRT. The results of the LRT and the information criteria AICC and BIC did not lead to different conclusions for the model selection, although the differences between the models became smaller with the AICC and even more with the BIC criteria due to penalizing more complex models carried out with these criteria.

Table 2
Estimated residual variance, log likelihood and information criteria of the different functions under the FR model for water intake and dry matter intake

<table>
<thead>
<tr>
<th>Model (function)</th>
<th>(\hat{\sigma}_e^2)</th>
<th>p</th>
<th>-2logL</th>
<th>(\Delta(-2\text{logL})^*)</th>
<th>(\Delta(\text{AICC})^*)</th>
<th>(\Delta(\text{BIC})^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR (GS)</td>
<td>176.15</td>
<td>669</td>
<td>181296</td>
<td>73</td>
<td>60</td>
<td>13</td>
</tr>
<tr>
<td>FR (Wi)</td>
<td>175.98</td>
<td>669</td>
<td>181274</td>
<td>51</td>
<td>39</td>
<td>11</td>
</tr>
<tr>
<td>FR (Lg2)</td>
<td>178.10</td>
<td>669</td>
<td>181546</td>
<td>323</td>
<td>310</td>
<td>263</td>
</tr>
<tr>
<td>FR (Lg3)</td>
<td>176.06</td>
<td>670</td>
<td>181285</td>
<td>62</td>
<td>55</td>
<td>31</td>
</tr>
<tr>
<td>FR (Lg4)</td>
<td>175.60</td>
<td>671</td>
<td>181225</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>FR (AS)</td>
<td>175.58</td>
<td>671</td>
<td>181223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR (GS)</td>
<td>6.26</td>
<td>669</td>
<td>105715</td>
<td>198</td>
<td>185</td>
<td>138</td>
</tr>
<tr>
<td>FR (Wi)</td>
<td>6.28</td>
<td>669</td>
<td>105779</td>
<td>262</td>
<td>249</td>
<td>202</td>
</tr>
<tr>
<td>FR (Lg2)</td>
<td>6.39</td>
<td>669</td>
<td>106176</td>
<td>659</td>
<td>646</td>
<td>599</td>
</tr>
<tr>
<td>FR (Lg3)</td>
<td>6.24</td>
<td>670</td>
<td>105622</td>
<td>105</td>
<td>99</td>
<td>75</td>
</tr>
<tr>
<td>FR (Lg4)</td>
<td>6.22</td>
<td>671</td>
<td>105546</td>
<td>29</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>FR (AS)</td>
<td>6.21</td>
<td>671</td>
<td>105517</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AICC = Akaike’s information criteria corrected; BIC = Bayesian’s information criteria; FR = fixed regression; GS = function of Guo and Swalve; Wi = function of Wilmink; Lg2–Lg4 = Legendre polynomial of order 2, 3 and 4; AS = function of Ali and Schaeffer; \(\hat{\sigma}_e^2 \) = residual variance; n = number of fixed effects included in the FR model

* calculated as difference to the FR (AS) model
For both traits the AS and Lg4 functions were the most suitable functions to model the average lactation curve under the FR models. Of these two functions AS showed somewhat lower information criteria. However for water intake, using the BIC criteria the differences between the models, except the FR (Lg2) model, were only small yet.

The different models were compared with regard to the plot of the mean residual water intake (Figure 2) and dry matter intake (Figure 3) against the days in milk. This was done to check whether the functions provide a constant model fit and thus homogeneity of variance of the average residuals along the whole lactation.

Figure 2
Mean residuals of water intake (kg/d) against days in milk for the six functions.
Comparing the different functions for both traits, the AS as well as the Lg4 function showed the best modelling. The average residuals obtained with these two functions were uniformly spaced around the value 0, while the residuals of the other functions, especially the Lg2 function, showed heterogeneity of variance while observing more or less major deviations from a uniform distribution around the value 0. It was obvious that with the Lg2 function the predicted values at the beginning (end) of the lactation are overestimated (underestimated) leading to negative (positive) residuals. In contrast, the residuals obtained with the Wi and GS functions were mainly positive at the beginning and negative at the end of the lactation. This was obvious especially for dry matter intake.

Comparison of different RR submodels to model the cow-specific lactation curve

Under the different RR models, the AS function was chosen to model the fixed effect of average lactation curve due to best model fit. For the modelling of the cow-specific lactation curves again the six different functions were tested. The number of covariance components, the restricted log likelihood values and information criteria of the different RR (sub)models are given (Table 3).
Table 3
Number of covariance components (q), restricted log likelihood and information criteria of the different functions under the RR model for both traits

<table>
<thead>
<tr>
<th>Model (function)</th>
<th>q</th>
<th>-2RlogL</th>
<th>Δ(-2RlogL)*</th>
<th>Δ(AICC)*</th>
<th>Δ(BIC)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR (GS)</td>
<td>12</td>
<td>167014</td>
<td>353</td>
<td>335</td>
<td>305</td>
</tr>
<tr>
<td>RR (Wi)</td>
<td>12</td>
<td>167051</td>
<td>390</td>
<td>372</td>
<td>343</td>
</tr>
<tr>
<td>RR (Lg2)</td>
<td>12</td>
<td>166972</td>
<td>311</td>
<td>293</td>
<td>263</td>
</tr>
<tr>
<td>RR (Lg3)</td>
<td>16</td>
<td>166793</td>
<td>132</td>
<td>122</td>
<td>105</td>
</tr>
<tr>
<td>RR (AS)</td>
<td>21</td>
<td>166723</td>
<td>62</td>
<td>63</td>
<td>65</td>
</tr>
<tr>
<td>RR (Lg4)</td>
<td>21</td>
<td>166661</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR (GS)</td>
<td>12</td>
<td>95581</td>
<td>491</td>
<td>472</td>
<td>443</td>
</tr>
<tr>
<td>RR (Wi)</td>
<td>12</td>
<td>95616</td>
<td>526</td>
<td>507</td>
<td>479</td>
</tr>
<tr>
<td>RR (Lg2)</td>
<td>12</td>
<td>95598</td>
<td>508</td>
<td>489</td>
<td>460</td>
</tr>
<tr>
<td>RR (Lg3)</td>
<td>16</td>
<td>95398</td>
<td>308</td>
<td>297</td>
<td>281</td>
</tr>
<tr>
<td>RR (AS)</td>
<td>21</td>
<td>95196</td>
<td>106</td>
<td>107</td>
<td>110</td>
</tr>
<tr>
<td>RR (Lg4)</td>
<td>21</td>
<td>95090</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AICC = Akaike’s information criteria corrected; BIC = Bayesian’s information criteria; RR = random regression; GS = function of Guo and Swalve; Wi = function of Wilmink; Lg2–Lg4 = Legendre polynomial of order 2, 3 and 4; AS = function of Ali and Schaeffer; * calculated as difference to the RR (Lg4) model

The RR (Wi) submodel showed the highest information criteria for both traits. Comparing all model variants the best model fit was achieved with the RR (Lg4) model for both traits. Generally, it was obvious that the RR models delivered much better information criteria than the FR models.

Finally, the model with the best fit (RR (Lg4)) was compared to the same model except the SP(POW) error covariance structure in order to confirm the estimated correlations between the residuals and thus to verify the necessity of the assumption of the SP(POW) error covariance structure. For both traits, the estimated correlations between the repeated measures and the estimated residual variances – dependent on parity class and obtained with the RR (Lg4) model – are given as well as the results of the LRT in comparison to the same model except the SP(POW) error covariance structure (Table 4).
Table 4

Estimated residual variance (\(\sigma_e^2 \)) and correlation between repeated measures (\(r_e \)) – dependent on parity class – and results of the LRT between the RR (Lg4) model and the same model except the error covariance structure

<table>
<thead>
<tr>
<th>Parity class</th>
<th>(\sigma_e^2)</th>
<th>(r_e)</th>
<th>(\Delta(-2R\log L))</th>
<th>LRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water intake</td>
<td>67.34</td>
<td>-0.07</td>
<td>-0.04</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>98.68</td>
<td>-0.04</td>
<td>-0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>126.77</td>
<td>-0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter intake</td>
<td>2.63</td>
<td>-0.05</td>
<td>-0.05</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>3.80</td>
<td>-0.05</td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For both traits, the LRT exposed a significant better model fit for the RR (Lg4) model compared to the same model without the error covariance structure. Repeated measures of both traits were autocorrelated with \(r_e \) between -0.04 and -0.14, depending on the parity class. Estimated residual variance increased with parity classes 1, 2 and 3 from 67.34 up to 126.77 and from 2.63 to 4.75 for water intake and dry matter intake, respectively.

Discussion

Lactation curves

The lactation curves for dry matter intake were similar to those presented by Veerkamp and Thompson (1999) and Hüttmann (2007). For water intake the lactation curves were akin to those observed by Murphy et al. (1983) except for the increase of water intake at the beginning of late lactation observed by the Lg4 and AS function. Apart from this increase the curves for water intake showed a path similar to the well known curves for milk yield. At this point it should be noted again, that only partial lactation was modelled because records were only available until lactation day 230. If the curve would be extended and thus extrapolated until lactation day 305, the increase in water intake, observed by the Lg4 and AS function, would be continued. This is probably unrealistically and hence, extrapolation should not be done. The actual existent increase at lactation day 200 is based on records of only a few cows. However, the increase might be a good indication that only the functions with five parameters (AS and Lg4) were flexible enough to model this new increase in the raw data. Hence, it was assumed that the AS and Lg4 functions are more suitable to model the lactation curves of water intake in contrast to the Wi and GS functions. Nevertheless, if full lactation records would have been available, it is assumed that the increase of water intake at lactation day 200 would disappear with the raw data and hence probably with the AS and Lg4 functions so that
lactation curves would be not very different between the six functions. In this case, other criteria would have to generate more information about appropriateness of lactation functions and the corresponding model selection. All in all, it is not expected that records from complete lactations would have resulted in a different model selection, although this is speculative.

Comparison of different FR submodels to model the average lactation curve

The comparison of different FR submodels did not lead to different results for both traits. In detail, the AS function was the most suitable function to model the fixed effect of average lactation curve for both traits. Only a slightly inferior fit was found for the Lg4 function for both traits. Hence, the assumption after visualisation of the lactation curves that the functions with five parameters might be more flexible and thus suitable was indeed confirmed. In the literature the AS function has been frequently used to model of lactation curves (López-Romero and Carabaño, 2003). In previous studies, this function has been used in order to analyse the relationship between water and dry matter intake in the course of lactation (Kramer et al., 2008a) and to investigate the autocorrelation patterns of residuals of water and dry matter intake (Kramer et al., 2008b). For feed intake and energy balance this function was also used by Woodford et al. (1984), de Vries et al. (1999) and Collard et al. (2000). Furthermore, modelling the lactation curve of even somatic cell count measurements was also performed using this function (Reents et al., 1995) indicating that many different traits can be successfully modelled using the AS function.

An additional criterion to evaluate model fitting ability is the average residual at the different lactation days (Silvestre et al., 2006). The mean error should preferably be small and the residuals should randomly oscillate between negative and positive residuals. This indicates that model fit is constantly good over the whole range of lactation. For both traits the graphs confirmed the model fit statistics and our assumption after visual inspection of the particular lactation curves. The mean residuals showed that not each tested lactation curve model was suitable to model water and dry matter intake because some of these functions made systematic errors at some stages of lactation. Comparing the different functions, those with five parameters (AS as well as the Lg4 function) were best for modelling, while the other functions showed more or less heterogeneity of variance. However, for the mean residuals of water intake observed with the Wi and GS functions only slightly more heterogeneity of variance was obvious. It confirmed again the BIC information criteria (Table 2), because these indicated only marginal differences between the AS, Lg4, GS and Wi functions for
water intake in contrast to dry matter intake. The worst modelling was observed with the Lg2 function and that was in accordance with the results of the study of Silvestre et al. (2006). Generally, modelling at the beginning and the end of the lactation seemed to be more difficult than on the days in the middle of the lactation. This was assumed to be the case especially for functions with inferior model fit because these functions provided systematic over-/underestimation of the predicted values and thus negative/positive residuals at the beginning or end of the lactation (Silvestre et al., 2006). Additionally, model performance of the lactation models are strongly affected by the number of underlying observations per lactation (Silvestre et al., 2006). Furthermore, the availability of test day records before peak yield is crucial for the correct estimation of the lactation curve shape (Macciotta et al., 2005). This might also be an explanation for the clear differences between model performance of the separate functions in this study because the research herd is characterised by a frequently changing cow stock. There were several cows with only few observations per lactation (at least 15 by definition) and/or cows with a major interval between calving and first test day, because they remained the first part of lactation in the production herd. Generally, there may be more appropriate datasets to analyse lactation curve models. However, the average amount of about 109 records per lactation may indicate, that the data are suitable albeit not optimal for this type of analysis.

Due to the slightly better model fit compared to the Lg4 function and no observable differences between the distribution of the separate average residuals of both traits during lactation, the AS function was chosen to model the fixed effect of the lactation curve while testing the RR models.

Comparison of different RR submodels to model the cow-specific lactation curve

For both traits the RR models had much lower information criteria in contrast to the FR models regardless of which function was used. Similar results were found by Hüttmann (2007) for daily milk yield and dry matter intake with different FR and RR models obtaining a general better fit with the RR models. With RR models, water intake and dry matter intake dynamics are modelled separately for each lactation day leading to a more effective consideration of the underlying biology and therefore to much more precise results (van der Werf, 2001, Mielenz et al., 2006).

Comparing the different submodels, the RR (Lg4) model provided the best model fit, thus it was indicated that this function was most suitable to map the individual water and feed intake dynamics of each cow during the lactation. Legendre polynomials have also been used quite
often to model lactation curves of milk yield (Liu et al., 2006), but also for feed intake and energy balance parameters (Coffey et al., 2002). Silvestre et al. (2006) hypothesised that the Lg4 function, which is a polynomial of the 4th degree, was able to fit daily data superior to functions with less than five parameters such as Wi or Legendre polynomials of less than four degrees. This was in line with the results of the present daily data-based study. It led to the conclusion that for both the fixed and random lactation curves the functions with five parameters (AS and Lg4) delivered the best information criteria in contrast to the other functions with less than five parameters (Wi, GS, Lg2 and Lg3).

Different functions provided the best model fit for the fixed and the random lactation curves for both traits. According to this also two different functions (Wi, Lg2) are currently used in the German national genetic evaluation to model the fixed and random lactation curves of milk yield (VIT, 2008). It is imaginable that the individual dynamics of each cow with high variation and corresponding high amplitudes (especially since it is obvious for water and feed intake) would have been better mapped by for instance the Lg4 function and the average lactation curve would have been better modelled using another function (for instance AS). The Lg4 function has an advantage for model performance in contrast to the AS function if only few observations per cow are available, especially at the beginning of lactation (Silvestre et al., 2006). This might have been a reason for the advantage of the Lg4 function for modelling the cow-specific lactation curves, because the dataset of the present study contained several cows that had previously stayed in the production herd and, hence, these cows had their first test day later in lactation. Nevertheless, this might no longer have had any effect on the modelling of the average lactation curve and another function (i.e. AS) actually performed better. To check the correctness of these assumptions the Lg4 function was used to model both the average and random lactation curve under an additional RR model (not presented in Table 3). The model fit statistics indeed were inferior in contrast to the preferable RR (Lg4) model, which contains the AS and Lg4 function for the modelling of the fixed and random lactation curve. Nevertheless, an RR model using the Lg4 function for both the average and random lactation curve might be an alternative because of the probably higher simplicity during programming.

In addition, the comparison of the RR (Lg4) model and the same model except the SP(POW) error covariance structure resulted in a significant difference under using the LRT. Thus it was necessary to include the error covariance structure. This is in line to the results of Hüttmann (2007), who also observed significant differences between RR models with and without using an error covariance structure for daily feed intake and energy balance data.
However, the estimated correlations between adjacent repeated measures were only estimated at marginal values (-0.04 to -0.14 for both traits). Maybe one would have expected positive instead of negative correlations. It might be imaginable that cows react inhibited at one day since they have eaten or drunk much at the previous day. Of course this is speculative. The highest residual variance was estimated with observations from the third parity class indicating that the model could not explain as much of the variation in contrast to observations from first and second parity cows. According to this, the (absolute value of the) correlations between the residuals of adjacent repeated measures of the third parity class were the highest confirming that with a inferior model fit the left over covariance between these residuals may increase.

All in all, the model with the best fit – RR (Lg4) including the error covariance structure SP(POW) – must be emphasised for analyses of datasets of water intake and dry matter intake including also missing observations in order to obtain valid statistical inference and correct variance components (van der Werf, 2001, Sawalha et al., 2005, Rosário et al., 2007).

Conclusion

Mean residuals of water and dry matter intake against days in milk showed clear differences in model performance between the different FR submodels. This was confirmed by the information criteria indicating the best model fit for the fixed and random effect of days in milk using the AS and Lg4 functions, respectively. Furthermore, application of a covariance structure was necessary. This led to the conclusion that the model with the best fit RR (Lg4) must be emphasised for analyses of datasets of water intake and dry matter intake including also missing observations.

References

Chapter Four:

Lameness and mastitis detection in dairy cows by application of Fuzzy Logic

E. Kramer¹, D. Cavero², E. Stamer³, J. Krieter¹

¹Institute of Animal Breeding and Husbandry, Christian-Albrechts-University
D-24118 Kiel, Germany
²Lohmann Tierzucht GmbH, D-27454 Cuxhaven, Germany
³TiDa Tier und Daten GmbH, D-24259 Westensee/Brux, Germany

Submitted for publication in Livestock Science
Abstract

The aim of the present study was to develop a fuzzy logic model for classification and control of lameness and mastitis in cows using the data of the Futterkamp dairy research farm of the Schleswig-Holstein Chamber of Agriculture. A dataset of about 13,500 records from 119 cows was used. Lameness treatments were used to determine two definitions of lameness; they differed in the length of the corresponding disease block. Mastitis was determined according to the definitions: (1) udder treatments and (2) udder treatment or SCC over 400,000/ml. Disease alerts by the fuzzy logic model were generated using the variables milk yield, dry matter intake, dry matter intake behaviour (number of visits at the feeding trough, time spent at the feeding troughs), water intake, activity and information about preliminary diseases as input data. To develop and verify the model, the dataset was divided into training data (9,074 records) and test data (4,604 records). The evaluation of the model was carried out according to sensitivity, specificity and error rate. If the block-sensitivity was set to be at least 70%, the specificity for lameness detection ranged between 75.3% and 75.9% and the error rate varied between 98.9% and 99.5% depending on lameness definition. With the mastitis detection models, specificities ranged between 84.1% and 92.1%, while error rates were obtained between 96.2% and 97.9%. The results of the test data verified those of the training data, indicating that the models could be generalised but also are not yet applicable in practice.

Keywords: dairy cow, lameness, mastitis, fuzzy logic.

Introduction

Lameness and mastitis still remain very important diseases for the dairy industry. In the year 2007 culling rates in Germany due to lameness and mastitis were 12.2% and 16.6%, respectively, and have changed only marginally in the last few years (ADR, 2007). Simultaneously, with increasing herd sizes, the time needed to detect diseases by farm staff has decreased. Average economic losses caused by one case of lameness are rated at 446 US$ per cow and year (Esslemont and Kossaibati, 1997) and economic losses due to mastitis are estimated to be around 150-200 Euro per cow and year (DVG, 2002). In addition, animal welfare has become more and more important (de Mol and Ouweltjes, 2001) and thus it is indicated that there is an overall interest for an early detection of diseases. Amongst others, Cavero et al. (2006) developed a fuzzy logic detection model for early mastitis detection with electrical conductivity and milk yield as input parameters. They found high sensitivities and
specificities but too high error rates. Nevertheless these authors considered that fuzzy logic can be a useful tool if an adequate sensor technique is available.

Furthermore, there are many studies which showed a linkage between water and feed intake and the corresponding behaviour on the one hand and cow’s health status on the other hand (González et al., 2008, Lukas et al., 2008). Lukas et al. (2008) indicated that a case of mastitis or lameness significantly reduces the cow’s water and dry matter intake. In addition, González et al. (2008) reported on differences in feeding behaviour between healthy cows and cows with lameness within the 30 days before the disease occurred. Thus the aim of the present study was to develop an automated detection system for lameness and mastitis with fuzzy logic models. The potential input variables milk yield, water and dry matter intake and also parameters regarding the animals behaviour such as number of visits at the feeding troughs and feeding time were used in order to assess whether they could serve as alternative input parameters for disease detection models in contrast to parameters obtained from other sensor technologies.

Materials and Methods

Data

Data were recorded on the Futterkamp dairy research farm of the Chamber of Agriculture of Schleswig-Holstein between August 2006 and February 2007. In total about 13,500 cow-days were accumulated from 119 Holstein Friesian cows with 135 lactations. Cows were milked twice daily and they were fed an ad libitum total mixed ration also twice daily. The feeding and the water troughs developed and installed by the company INSENTEC were equipped with an individual cow identification system, so the cows were only able to pass the troughs one at a time. Each visit to the water and feeding trough was routinely recorded and the amounts of collected feed and water were accumulated to daily yields. Furthermore, each milking for the trait milk yield was recorded with the milk meter technology of the company DeLaval and activity measurement was taken using neck transponders made by the same company. In addition, medical treatments of diseases were recorded permanently by veterinarians and farm staff. Extreme values (mainly for the traits water intake and dry matter intake) that deviated more than ±4 s.d. were excluded from the dataset. Thus, for the traits milk yield, water intake, dry matter intake, number of feeding visits, feeding time and activity observations from 5.8 to 58.5 kg, 9.7 to 165.9 kg, 3.1 to 35.9 kg, 2 to 131, 18 to 385 min and 6 to 89 contacts per hour, respectively, were taken into account, while the average amount of dry matter was about 45% during the data collecting period. Average milk yield, water and
dry matter intake were 34.9, 84.3 and 20.3 kg, respectively. Mean number of feeding visits was 51.9 and cows spent an average of 180 minutes at the feeding troughs. Additionally, the mean activity value per day was 30.8 contacts per hour. The cows belonged to lactation numbers 1 to 9 and the days in milk included were between day 6 and day 305.

In order to make a pre-selection of potentially suitable input traits for early disease detection, four subdatasets were generated comprising a) cows with at least one case of lameness in the first 100 lactation days, b) healthy cows within the same lactation stadium as for a, c) cows with at least one case of mastitis in the first 100 lactation days and d) healthy cows within the same lactation stadium as for c. The first 100 lactation days were chosen because these are the days with the highest frequency of diseases (e.g. Hinrichs et al., 2006). The lame cows in subdataset a) had their first treatment on average at lactation day 48. Hence both datasets a) and b) consisted of lactation days 28 to 48 in order to compare the preceding days before the disease with the corresponding healthy cows. In addition, the cows with mastitis were firstly treated on average at lactation day 44. Thus both datasets c) and d) contained the lactation days 24 to 44. Average milk production, water and dry matter intake, number of feeding visits, feeding time and activity exemplary for subdatasets a) to d) are given in Table 1.

Table 1
Means (\(\bar{x}\)) of the analysed traits for the lame cows, mastitis cows and the corresponding particular healthy cows (standard deviations in parentheses)

<table>
<thead>
<tr>
<th>Trait</th>
<th>Lame cows</th>
<th>Healthy cows</th>
<th>Mastitis cows</th>
<th>Healthy cows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cows</td>
<td>17</td>
<td>48</td>
<td>13</td>
<td>51</td>
</tr>
<tr>
<td>Lactation stage (days)</td>
<td>28-48</td>
<td>28-48</td>
<td>24-44</td>
<td>24-44</td>
</tr>
<tr>
<td>Average number of parity</td>
<td>3.3 (1.7)</td>
<td>2.2 (1.1)</td>
<td>2.3 (0.8)</td>
<td>2.2 (1.0)</td>
</tr>
<tr>
<td>Milk yield (kg)</td>
<td>39.6 (7.4)</td>
<td>39.7 (8.0)</td>
<td>36.9 (6.5)</td>
<td>39.5 (8.1)</td>
</tr>
<tr>
<td>Water intake (kg)</td>
<td>87.6 (19.3)</td>
<td>89.7 (18.7)</td>
<td>86.3 (20.8)</td>
<td>88.9 (18.3)</td>
</tr>
<tr>
<td>Dry matter intake (kg)</td>
<td>20.2 (3.7)</td>
<td>20.2 (3.7)</td>
<td>19.8 (4.0)</td>
<td>19.9 (3.6)</td>
</tr>
<tr>
<td>Feeding time (min)</td>
<td>171.1 (45.6)</td>
<td>192.1 (49.4)</td>
<td>162.4 (41.8)</td>
<td>191.2 (49.2)</td>
</tr>
<tr>
<td>Number of feeding visits</td>
<td>41.8 (18.6)</td>
<td>56.0 (20.3)</td>
<td>49.8 (20.5)</td>
<td>55.8 (20.2)</td>
</tr>
<tr>
<td>Activity (contacts/h)</td>
<td>28.0 (9.3)</td>
<td>32.0 (10.3)</td>
<td>22.5 (7.5)</td>
<td>31.8 (10.3)</td>
</tr>
</tbody>
</table>

Production traits were only marginally affected prior to a disease, regardless of suffering from lameness or mastitis, compared with the corresponding healthy cows. Clear differences between diseased and healthy cows were found for the traits feeding time, number of feeding
visits and activity. This is in accordance with González et al. (2008), who observed different feeding behaviour between healthy cows and cows developing a disease in a time interval of 30 days before the first clinical sign of the disease occurred. Thus it was decided to use these traits as potential input parameters for the disease detection models.

Finally, the complete dataset was randomly divided into two data subsets with different cows. Two thirds of the original data were the training data, used to develop the fuzzy logic model. The other part of the data was the test data used to test whether the developed model could be generalised.

Disease definitions

Diseases were defined as disease blocks, i.e. an uninterrupted sequence of “days of disease”. The treatments served as a basis for these disease blocks and the different definitions varied only in the sequence length of the blocks. Due to the fact that cows change their feeding behaviour a few days before clinical outbreak (González et al., 2008) and, additionally, the focus of this study was on early disease detection, only the days before the treatment were included in the disease blocks. Quimby et al. (2001) reported that morbid animals can be identified earlier by monitoring feeding behaviour by four days. Hence, the following definitions for claw and leg diseases were dependent on the number of included block disease days before treatment:

1) Treat 3: day of treatment including three days before the treatment
2) Treat 5: day of treatment including five days before the treatment

In addition, udder health was classified on the basis of information on udder treatments as well as on the cows’ SCC, which was measured weekly from pooled quarter milk samples taken from each cow. A total of 1,016 SCC tests was carried out with 151,000 cells/ml on average. The threshold of 400,000 cells/ml was used in the present study, which represents the European Union maximum bulk milk SCC legal limit for saleable milk. An SCC measurement of > 400 cells/ml was just as equally concerned as a treatment. Hence, two variants of mastitis definition were used in this investigation. According to Quimby et al. (2001) the disease blocks were extended to four days before the treatment and/or measurement was made:

1) Treat 4: treatment performed without consideration of SCC, including four days before treatment
2) Treat 400: treatment performed and/or a SCC > 400,000 cells/ml, including four days before treatment and/or measurement
The days in the dataset were classified as “days of health”, “days of lameness”, “days of mastitis” or “unknown days”. Additionally, at least seven days – after the first day of treatment occurred i.e. the last day within the defined disease block – were set to “unknown” in order to give consideration to the withdrawal period. A disease block was defined as an uninterrupted sequence of “days of disease” and if at least one alarm was generated by the model within this block, the block was considered as detected.

Sixteen lameness blocks were found for the training data and eleven lameness blocks for the test data. Depending on the mastitis definition, fourteen and 41 mastitis blocks were found to conform to mastitis definitions 1 and 2, respectively, for the training data and eight and seventeen for the test data. Distributions of days of health, days of disease as well as averaged lameness or mastitis and healthy cows per day subject to definition of lameness or mastitis are shown in Table 2.

Table 2
Number of days of health (Doh), days of lameness/mastitis (Dol/ Dom) or unknown days as well as averaged lameness, mastitis and healthy cows per day (Lc/d, Mc/d, Hc/d) according to the two different lameness/mastitis definitions considered.

a) Lameness

<table>
<thead>
<tr>
<th>Training data</th>
<th>Dol</th>
<th>Doh</th>
<th>Unknown</th>
<th>Lc/d</th>
<th>Hc/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Treat 3</td>
<td>62</td>
<td>8,705</td>
<td>307</td>
<td>0.27</td>
<td>43.1</td>
</tr>
<tr>
<td>2) Treat 5</td>
<td>92</td>
<td>8,645</td>
<td>337</td>
<td>0.40</td>
<td>43.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test data</th>
<th>Dol</th>
<th>Doh</th>
<th>Unknown</th>
<th>Lc/d</th>
<th>Hc/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Treat 3</td>
<td>44</td>
<td>4,374</td>
<td>189</td>
<td>0.19</td>
<td>21.8</td>
</tr>
<tr>
<td>2) Treat 5</td>
<td>66</td>
<td>4,338</td>
<td>203</td>
<td>0.29</td>
<td>21.7</td>
</tr>
</tbody>
</table>

b) Mastitis

<table>
<thead>
<tr>
<th>Training data</th>
<th>Dom</th>
<th>Doh</th>
<th>Unknown</th>
<th>Mc/d</th>
<th>Hc/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Treat 4</td>
<td>37</td>
<td>8,537</td>
<td>500</td>
<td>0.16</td>
<td>43.2</td>
</tr>
<tr>
<td>2) Treat 400</td>
<td>205</td>
<td>8,457</td>
<td>412</td>
<td>0.89</td>
<td>42.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test data</th>
<th>Dom</th>
<th>Doh</th>
<th>Unknown</th>
<th>Mc/d</th>
<th>Hc/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Treat 4</td>
<td>31</td>
<td>4,392</td>
<td>184</td>
<td>0.13</td>
<td>21.9</td>
</tr>
<tr>
<td>2) Treat 400</td>
<td>79</td>
<td>4,367</td>
<td>161</td>
<td>0.34</td>
<td>21.7</td>
</tr>
</tbody>
</table>

Methods

A multivariate fuzzy logic model was used to develop the automatic detection of lameness and mastitis using MATLAB software (MATLAB, 2003). According to Biewer et al. (1997)
fuzzy logic translates natural language knowledge into formal mathematical modelling and is characterised by three steps: fuzzification, fuzzy inference and defuzzification (Zimmermann, 1991):

a) Fuzzification:
Fuzzification is the transformation of algebraic variables into linguistic variables and the corresponding allocation of the grade of membership (a scalar between 0 and 1) to the diverse membership functions (2-4 per trait in the present study). The input values for fuzzification were the relative deviation of the traits milk yield, water intake, dry matter intake, number of feeding visits, feeding time and activity between actual measured value and the corresponding estimated moving average performed by means of the of previous five values. In addition, the input variables “preliminary case of lameness/mastitis in the actual lactation” and “preliminary case of lameness/mastitis in the previous lactations” were included with two membership functions (Yes or No) for the lameness/mastitis detection models.

Figure 1 is shown as an example to illustrate the concept of linguistic variable and membership function for the input variable deviation in feeding visits. A relative deviation of 85% would result in intersections with the membership functions “high” and “very high”. The grade of membership would be 0.25 and 0.75 for the membership functions “high” and “very high”, respectively.

![Membership function for the input variable relative deviation in feeding visits](image-url)
b) Fuzzy inference:
This contains the setting of rules (if-conditions and then-conclusions) with the linguistic combination of the traits, based on human knowledge. The outcome of combined traits was the determination of the health status of the cow with the membership functions “very high”, “high”, “middle” and “low” possibility of lameness/mastitis. An example for a rule box for combination of the traits ‘deviation in activity’ and ‘deviation in feeding visits’ is presented in Table 3. For example: IF deviation in feeding visits is “high” and deviation in activity is “high”, THEN health status is a “higher” risk of lameness.

Table 3
Rules for the fuzzy inference for the traits deviation in activity and deviation in feeding visits, concerning the risk of lameness

<table>
<thead>
<tr>
<th>Deviation in feeding visits</th>
<th>Deviation in activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>No lameness</td>
</tr>
<tr>
<td>Normal</td>
<td>No lameness</td>
</tr>
<tr>
<td>High</td>
<td>Middle risk</td>
</tr>
<tr>
<td>Very high</td>
<td>Higher risk</td>
</tr>
</tbody>
</table>

c) Defuzzification:
Defuzzification is the transformation of the fuzzy values into one output value, which has to be compared with the real output data in order to evaluate the performance of the model.

Test procedure
If the resulting value of defuzzification exceeded a given threshold value, the system generated an alert. This threshold depended on the lameness/mastitis definition. The model performance was assessed by comparing these alerts with the actual occurrences of lameness and mastitis, respectively. In doing so four different classifications could appear:
The concerning day of observation was classified as true positive (TP) if the threshold was exceeded on a day of lameness/mastitis, while a non-detected day of lameness/mastitis was classified as false negative (FN). Each day in a healthy period was considered a true negative case (TN) if no alerts were generated and a false positive case (FP) if an alert was given.
The accuracy of these procedures was evaluated by the parameters sensitivity, block sensitivity, specificity and error rate.
The sensitivity represents the percentage of correctly detected days of lameness/mastitis of all days of lameness/mastitis:

\[
sensitivity = \frac{true\ positive}{true\ positive + false\ negative} \times 100
\]

While sensitivity considered each single day of lameness/mastitis, for block sensitivity each disease block was considered as a true positive case (TP) if one or more alerts were given within the defined lameness/mastitis block and a false negative case (FN) otherwise.

The specificity indicates the percentage of correctly found healthy days from all the days of health:

\[
specificity = \frac{true\ negative}{true\ negative + false\ positive} \times 100
\]

The error rate represents the percentage of days outside the lameness/mastitis periods from all the days where an alarm was produced:

\[
error\ rate = \frac{false\ positive}{false\ positive + true\ positive} \times 100
\]

In addition, the number of false positive and true positive cows per day is also given. The number of false positive cows per day is important. True positive and false positive cows/day signifies the average number of rightly and wrongly diseased-registered cows per day, respectively, and thus directly indicates the effort of the farmer with regard to disease monitoring.

Results and discussion

The block-sensitivity was set to be at least 70%, thus the threshold for the value of fuzzy output for the alarm occurrence was optimised for each variant. During the model development process many different combinations of the input parameter were tested. For lameness detection the most sufficient accuracy was obtained using the input parameters dry matter intake, feeding time, number of feeding visits, activity and preliminary case of lameness in actual lactation. The best mastitis detection model resulted from the combination of the input parameters milk yield, water intake, dry matter intake, feeding time, number of feeding visits and preliminary cases of mastitis in actual and previous lactation(s) (Table 4). For the training data specificities were 71.2% and 70.8% for the lameness definitions Treat 3 and Treat 5, respectively. However, error rates were also high with 99.3% and 98.3%. For the mastitis detection models, block sensitivities and specificities ranged between 71.4-78.0% and
77.4-88.3%, respectively, for the variants Treat 4 and Treat 400. But again the error rates were very high with 99.3% and 96.7%. The fact that there are many more “days of health” than “days of lameness or mastitis” (see also Table 2) causes a greater likelihood for FP to arise, which has a considerable impact on the error rate.

Table 4
Classification parameters of lameness (a) and mastitis (b) detection from the training data and test data by the fuzzy logic models

<table>
<thead>
<tr>
<th>Training data</th>
<th>Threshold</th>
<th>Sensitivity 5)</th>
<th>Specificity</th>
<th>Error rate</th>
<th>TP cows/d</th>
<th>FP cows/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Treat 3</td>
<td>0.52</td>
<td>75.0</td>
<td>71.2</td>
<td>99.3</td>
<td>0.09</td>
<td>12.0</td>
</tr>
<tr>
<td>2) Treat 5</td>
<td>0.53</td>
<td>75.0</td>
<td>70.8</td>
<td>98.3</td>
<td>0.21</td>
<td>12.1</td>
</tr>
<tr>
<td>Test data 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Treat 3</td>
<td>0.52</td>
<td>72.7</td>
<td>75.9</td>
<td>99.5</td>
<td>0.02</td>
<td>5.0</td>
</tr>
<tr>
<td>2) Treat 5</td>
<td>0.53</td>
<td>72.7</td>
<td>75.3</td>
<td>98.9</td>
<td>0.06</td>
<td>5.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Training data</th>
<th>Threshold</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Error rate</th>
<th>TP cows/d</th>
<th>FP cows/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Treat 4</td>
<td>0.59</td>
<td>71.4</td>
<td>88.3</td>
<td>99.3</td>
<td>0.03</td>
<td>4.8</td>
</tr>
<tr>
<td>2) Treat 400</td>
<td>0.57</td>
<td>78.0</td>
<td>77.4</td>
<td>96.7</td>
<td>0.31</td>
<td>9.1</td>
</tr>
<tr>
<td>Test data 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Treat 4</td>
<td>0.59</td>
<td>75.0</td>
<td>92.1</td>
<td>97.9</td>
<td>0.03</td>
<td>1.7</td>
</tr>
<tr>
<td>2) Treat 400</td>
<td>0.57</td>
<td>82.3</td>
<td>84.1</td>
<td>96.2</td>
<td>0.12</td>
<td>3.3</td>
</tr>
</tbody>
</table>

1) Input parameter: dry matter intake, feeding time, number of feeding visits, activity and information about preliminary cases of lameness in the actual lactation

2) Input parameter: milk yield, water intake, dry matter intake, feeding time, number of feeding visits, activity and information about preliminary cases of mastitis in the actual and previous lactations

3) Average for training data: 43 cows per day

4) Average for test data: 22 cows per day

5) Calculated as block-sensitivity

Averaged true positive and false negative cows/day were also determined, which means the number of cows per day classified rightly and wrongly as diseased, respectively, and thus directly illustrates the farmers’ effort with regard to lameness or mastitis monitoring. The number of TP cows/day for the training data were 0.09 and 0.21 for lameness definitions 1 and 2 and 0.03 and 0.31 for mastitis defintions. The FP cows/day were 12.0 and 12.1 for the alternatives 1 and 2 of lameness definition and 4.8 and 9.1 for the different mastitis definitions. The average herd size for the training data was 43.4 cows/day and thus it was obvious that the farmer would not have much trust in the daily alert list.
The results obtained for the test data were in the same order of magnitude as for the training data, which argues for the validation of the model and ensures that the model does not overfit the data. This may indicate that the model is generally applicable.

Two variants of definition were used in this investigation for both disease categories. Generally, it was obvious that the more lameness/mastitis days were included in the datasets, the lower the error rates were due to a slightly lesser likelihood of FP alerts. This could be observed since the block length was extended (Treat 5 in contrast to Treat 3 for lameness) or the disease days were increased (mastitis definition Treat 400 due to including SCC data in contrast to Treat 4). All in all, it has to be pointed out that the disease definition is very important and influences subsequent classification results. Therefore, a comparison of model performance with other studies is difficult.

In the literature, similar lameness detection models using input or output parameters such as those in the present study could not be found. Both definitions in the present study were based on treatments of the cow and differed only in block length. Ill cows can be identified according to Quimby et al. (2001) four days before the disease occurs. Furthermore, cows change feeding behaviour in a 30-day period before a disease (González et al., 2008). Thus disease blocks were exposed in order to identify cases of lameness in the three or five days enduring period before clinical outbreak, i.e. an occurrence of the first treatment. The comparison of lame and healthy cows in a period of 20 days before treatment until the day of treatment could confirm these suggestions (see also Table 1). According to this, model performance with regard to sensitivity was acceptable since twelve of sixteen lameness blocks could be correctly detected leading to a sensitivity of 75%. In turn, specificities were only around 70% and above all, error rates were too high with about 98%. These latter classification parameters are mainly affected by the number of FP alerts, which was very high in the present study. A reason for this unfavourable high number of FP might be the fact that there is a high variation of the recorded traits between cows but also within cows and, according to Halachmi et al. (2008), cows always react individually to diseases. Hence, it is very difficult to detect a unique pattern as to how the cow suffer and/or develop a disease. Of course feeding behaviour especially has potential for lameness monitoring at a group level (González et al., 2008). Nevertheless, it is probably unsuitable to be the basis of cows’ individual health monitoring in a dairy herd with good health status since at this moment an avoidance of the bulk of FP alerts cannot be expected. Fortunately, in the last few years new sensor techniques have been increasingly developed and early lameness detection has seemed to work better with automatic visible analysis of cows’ gait (Flower et al., 2005) and/or
weight distribution of the feet (Rajkondawar et al., 2002). The latter technology is already used in practice (Stepmetrix®, BouMatic), although sensitivities and specificities are reported to be improvable for this technique, too (Bicalho et al., 2007).

For mastitis, two definitions were also used in this investigation. Variant 1 (Treat 4) is somewhat problematic since there may have been cows which were ill but not considered as such. This leads to a higher probability of FP resulting in high error rates. Moreover, there is also a higher probability of TN since most negatives were true. As a consequence, the specificity is also high for this variant. Variant 2 (Treat 400) is the other definition used in this dataset. In contrast to Variant 1, the proportion of ill cows and healthy cows is slightly higher (see also Table 2), resulting in somewhat higher probabilities for TP but also lower probabilities for TN. Consequently, this led to a moderate decrease of error rate and sensitivity, respectively, in contrast to Variant 1. Of course, a SCC threshold of 400,000 is arguable. It was also used by Cavero et al. (2006), who reported that this definition could be a compromise of a mastitis definition between only considering treatments (as be done for Treat) and a definition based on treatments and a relatively low SCC threshold such as 100,000, as recommended by the DVG (2002). Cavero et al. (2006) developed early mastitis detection models for an automated milking system using fuzzy logic as a method and amongst others electrical conductivity and milk flow as input variables. Since they allowed sensitivities to be at least 80%, they found specificities for the mastitis definitions “Treat”, “Treat 100” and “Treat 400” of about 94%, 78% and 89%, respectively, and also high error rates with 96%, 47% and 77% for the three variants. Although their error rates were too high in order to emphasise a wide use in practice, the performance of their models was somewhat better than that obtained in the present study. All in all, it is indicated that the input parameters used in the present study are not suitable for early mastitis detection due to the too large variances of the input parameters between and within cows. Alternative on-farm analyses such as viscosity measurement or online cell count measurement of the milk have also been developed (Ordolff, 2005). These new sensor techniques are already sporadically used in practice and will help the farmer to monitor the udder health status of cows in the future (Lely, 2008, DeLaval, 2008).

All in all, the basis for the evaluation of the performance of disease detection is the knowledge of the actual status of the cow on each day of observation, therefore the choice of the length of the reference mastitis block is crucial. The block-sensitivity was calculated for the whole disease blocks, dependent on the different disease definitions. The evaluation parameters depend strongly on the length of the reference period around the date established
for a case of lameness/mastitis. In fact, the block-sensitivity would increase significantly if longer periods were considered. For instance, Mele et al. (2001) took seven days for clinical and ten days after and ten days before for subclinical mastitis and de Mol et al. (1997) took ten days before till seven days afterwards for clinical mastitis and fourteen days before and after for subclinical mastitis. This indicates that comparing the classification parameters of the different models is very difficult. In another study, a mastitis period comprised the day when clinical mastitis was recorded plus the preceding six days (de Mol and Ouweltjes, 2001), which is similar to the definition Treat for mastitis (and both lameness definitions Treat 3 and Treat 5) used in the present study. Furthermore, in the present study, specificities were calculated considering all cows. This has not been done in other studies (de Mol and Ouweltjes, 2001, Mele et al., 2001), where only cows with no case of mastitis during the test period were used. This led to a higher possibility of obtaining FP in the present study.

Conclusion

The automation of the detection of lameness or mastitis using traits with regard to performance (milk yield, water and dry matter intake) or behaviour (feeding behaviour, activity) did not perform well enough to obtain the chance to use it in practice. The huge variability of the input parameters between and within cows made it very difficult to detect a unique pattern for cows developing a case of lameness or mastitis although means of the input traits obtained from a group of ill cows indicated differences in contrast to healthy cows. The established fuzzy logic method was used to develop a detection model for lameness/mastitis, and model performance is not expected to be improved since other methods (e.g. neural networks) would be applied.

Acknowledgements

The authors are grateful to the Stiftung Schleswig-Holsteinische Landschaft for financial support to this project.

References

General Discussion

The aim of the present study was to analyse serial data in dairy cows. Special emphasis was given to the traits water and feed intake. In a first step, the general relationship between these traits and additionally milk yield was analysed and model evaluation was performed. To do this, different fixed and random regression models and in detail several candidate error covariance structures and lactation curve models were compared. Finally, a fuzzy logic model was developed in order to assess the potential of health monitoring based on water and feed intake and other serial data such as e.g. activity.

Model analysis of repeated measurements in general

Model analysis in animal breeding has been a frequently discussed topic in the literature (amongst others van der Werf, 2001, Sawalha et al., 2005, Schaeffer and Jamrozik, 2008). With the development of technical progress in data recording, serial data – based on daily measurements – have become more and more available. According to this, repeated daily yields of e.g. the traits water intake and feed intake were available for the present study. In the literature only little knowledge exists up to now as to what kind of models are needed for the analysis of relatively new traits, especially water intake, and whether the relationship between these traits is constant during the lactation. Furthermore, it is arguable as to whether the repeated measures are independent or correlated and whether their correlation follows a special pattern. Another question deals with the lactation trajectory of the traits and in detail with the most suitable function to model the lactation curve. Hence, it is obvious that modelling new traits is crucial. Finally, it should be noted that it is generally emphasised to use a model with the best ability to fit in order to obtain valid statistical inference and correct variance components (Bonham and Reich, 1999, van der Werf, 2001).

Fixed and random regression models

Worldwide, the estimation of breeding values for dairy cows is increasingly done using random regression models (RR) instead of conventional fixed regression models (FR). Both model variants contain the fixed effect of the lactation curve, which is calculated by average regression coefficients universally valid for all cows. Due to the fact that the coefficients are constant and fixed for all animals, the corresponding models are called FR models. In contrast, the RR models include additional regression coefficients. These are computed for every animal, which is usually considered as a random effect in the mixed model (van der
Werf, 2001). These coefficients are therefore indicated as random regression coefficients and the corresponding models as RR models. Thus, RR models allow the estimation of cow-specific lactation curves (Schaeffer and Dekkers, 1994, Schaeffer, 2004). Furthermore, with RR models it is possible to detect a potential change in dependencies of traits within the course of lactation (Veerkamp and Thompson, 1999). Hence, both an FR and RR model were used in the Chapter One in order to detect the changing dependencies of water and feed intake in the course of lactation and to confirm the hypothesis of analysing these traits with RR models, too. The repeatabilities estimated with the RR models at the different lactation sections were slightly higher than the repeatabilities given by the FR models. The correlations (cow effects) between the beginning and the end of lactation for water and dry matter intake were only moderate with 0.47 and 0.43, respectively. Although the correlations (cow effects) between water and dry matter intake remained almost constant during the lactation (0.76-0.82), this was not the case for the correlations between water intake and milk yield (0.13-0.84) and dry matter intake and milk yield (0.48-0.93). It was obvious that the correlations within and across traits changed during lactation and thus RR models should also be used for analyses of water and dry matter intake. However, a genetic analysis would have been interesting at this point. Unfortunately, the number of cows in the dataset at 225 was too small to estimate heritabilities and genetic correlations. Since a genetic analysis would have confirmed the high correlations between water and dry matter intake, this would be interesting for dairy breeding. In times of increasing costs for feed concentrates, it is imaginable to include the trait feed intake into future dairy breeding programmes. Unfortunately, in contrast to water intake, recording feed intake is too expensive to implement in commercial farms. The related costs might be around 6000 € for one feeding trough (Junge, personal communication). But for water intake, the remaining costs can be evenly distributed across 10-15 cows since this number of cows is commonly emphasised requiring only one water trough. Of course, the farm has to be equipped with an individual cow identification technique. Hence, with the supposed high correlation between water and feed intake it is imaginable that water intake could serve as an information trait for feed intake and that it could be included in a dairy breeding programme.

Correlation between repeated measures
For datasets with repeated daily measures of cows such as those given in the present study, it is assumed that they are not independent and thus autocorrelated (Littell et al., 1998, Littell et al., 2006). Generally, repeated measurements deserve a special statistical treatment in the
sense that their covariance pattern, which has to be taken into account, is often very structured (van der Werf, 2001). Repeated measurements on the same animal are more correlated throughout than two measurements from different animals, and the correlation between repeated measurements may decrease as the time between them increases (Littell et al., 2006). Hence, modelling the covariance structure of repeated measurements correctly by using suitable error covariance structures is of great importance for drawing correct inference from such data (van der Werf, 2001). According to this, the daily measured traits water intake, dry matter intake and additionally milk yield were analysed in Chapter Two by using different FR and RR models with several error covariance structures. They were compared using the likelihood ratio test and the information criteria of Akaike (1973) and Schwarz (1978) in order to state whether error covariance structures are necessary for the analyses of water and dry matter intake. Furthermore, possible error covariance patterns were supposed to be detected thereby. For this purpose, missing observations (about 10% of the dataset) had to be replaced, because several error covariance structures are only valid for equally spaced datasets.

Including different covariance structures into the RR models resulted in better model fit in contrast to the simple RR models. The TOEPLITZ structure of order 4 (TOEP (4)) showed significantly better fit in contrast to the Autoregressive Model of First Order (AR (1)). The correlations for repeated measures of water and dry matter intake were very similar. It appeared to be the case that measures being two units apart are the highest correlated and even for measures three units apart correlations do exist. Similar correlation patterns for dry matter intake were found by Stamer (1995) and Hüttmann (2007) and a TOEPLITZ structure also provided best model fit in contrast to other covariance structures. Thus it was obvious that the correlation pattern between repeated measures of dry matter intake and also water intake is estimated more precisely under a TOEPLITZ matrix.

Finally, the effect of model choice on statistical inference was tested with the simple RR model and the RR model with an additional TOEP(4) error covariance structure. The fixed effect parity was not statistically significant under the simple RR model, while it was significant with the other model. According to this, Bonham and Reich (1999) estimated different variance components and found varying significances of least square means when taking different covariance structures for the residuals of repeated measures into account. Hence, it was obvious that model choice can influence the accuracy of statistical inference. All in all, a statistical analysis of repeated measures of water and dry matter intake should actually be performed with an RR model and an additional TOEP(4) error covariance structure. Unfortunately, the dataset analysed by such a model is not allowed to have missing
observations and since missing values are not unusual in this case, these have to be replaced. This is of course problematic and may not be done in praxis. Thus, another error covariance structure should be used instead. Hence, if daily measurements of water intake were included in dairy breeding programmes, the national genetic evaluation should be performed with an RR model, which includes a Spatial (Power) error covariance structure to model the autocorrelations between the measurements. Thus, valid statistical inference and correct variance components might be obtained.

Lactation curve models

Generally, modelling lactation curves has been a frequently discussed topic in the literature for the trait milk yield in contrast to water or feed intake (e.g. Wood, 1967, Guo and Swalve, 1995, van der Werf, 2001, Silvestre et al., 2006). In *Chapters One* and *Two*, the lactation curves of water and feed intake were modelled according to the parameters of AS (Ali and Schaeffer, 1987). But other functions beside AS might be quite suitable to model the lactation trajectory of water and feed intake. Hence, the objective of *Chapter Three* was to analyse daily water and feed intake measurements with different lactation curve models. In a first step, the best function for the average lactation curve of all cows was evaluated and chosen as the basis for the second step, the evaluation of the best function to model the cow-specific lactation curve.

For both traits the comparison of different FR submodels generally indicated that the function of AS was the most suitable function to model the fixed effect of the average lactation curve. Only a slightly inferior fit was found for the Legendre polynomial of order 4 (Lg4) for both traits. For feed intake and energy balance this function has also been used by Woodford et al. (1984), de Vries et al. (1999) and Collard et al. (2000). Furthermore, modelling the lactation curve of even somatic cell count measurements was also performed using this function (Reents et al., 1995) indicating that many different traits can be successfully modelled using the AS function. Hence, the AS function was chosen to model the fixed effect of the lactation curve while testing the RR models. Comparing the different RR submodels, the RR (Lg4) model provided the best model fit, thus it was indicated that this function was most suitable to map the individual water and feed intake dynamics of each cow during the lactation. Legendre polynomials have also been used quite often to model lactation curves of milk yield (Liu et al., 2006), but also of feed intake and energy balance parameters (Coffey et al., 2002). Silvestre et al. (2006) hypothesised that the Lg4 function, which includes 5 parameters and which is a polynomial of the 4th degree, is able to fit daily data in a more superior manner than
functions with less than five parameters such as the function of Wilmink (1987) or Legendre polynomials of less than four degrees. This was in line with the results of the present study. Beside the better information criteria, these functions also showed a more flexible modelling of the lactation curves since they were able to map the new increase in the raw data of water intake at the end of lactation in contrast to the functions with only four or less parameters. Thus, for the analysis of water and feed intake, the AS and the Lg4 functions should be used to model the average lactation curve and the cow-specific lactation curve, respectively. An RR model using the Lg4 function for both the average and the cow-specific lactation curve might nevertheless be an alternative.

Potential for health monitoring

After model evaluation, water and feed intake, but also feeding visits, feeding time, activity, milk yield and information about preliminary diseases were used to assess their potential for health monitoring in Chapter Four. They were included as input parameters in fuzzy logic models in order to detect lameness and mastitis automatically. Many different combinations of the input parameters were tested. If the sensitivities were set to be at least 70%, specificities ranged between 75% and 92%. However, the error rates were too high with at least 96.2%. The reason for these unsatisfying results may not have been due to the underlying method fuzzy logic, because this method is well established in data-mining and decision-making. Additionally, other methods such as neural networks are not assumed to improve the results. The worse results might rather have been caused by the high variation of the input parameters between cows but also within cows. In accordance with Halachmi et al. (2008), cows always react individually to diseases. Hence, it was very difficult to detect a unique pattern of the cows’ suffering and/or development of a disease. It was obvious that most of the input parameters used in the present study were unsuitable to be the basis to monitor the cows’ individual health. In addition, the sensors for the activity measurements were insufficient since many records were not realistic and had to be excluded from the dataset. Generally, developing adequate sensor technology is crucial for the subsequent success of automatic disease monitoring. With this regard, Cavero et al. (2006) developed a mastitis detection system using different statistical methods and using amongst others the input parameter electrical conductivity. They also argued that the sensors used in that study were not suitable to detect mastitis. Fortunately, in the last few years new sensor techniques have been increasingly developed for both lameness and mastitis detection. Early lameness detection has seemed to work better with automatic visible analysis of cows’ gait (Flower et
al., 2005) and/or weight distribution of the feet (Rajkondawar et al., 2002). The latter technology is already used in practice (Stepmetrix®, BouMatic), although sensitivities and specificities are reported to be improvable for this technique, too (Bicalho et al., 2007). For mastitis detection, viscosity measurement or online cell count measurement of the milk seem to be adequate alternatives (Ordolff, 2005). These new sensor techniques are also already sporadically used in practice and will help the farmer to monitor the udder health status of cows in the future (Lely, 2008, DeLaval, 2008).

References

General Summary

This thesis focuses on the analysis of serial data in dairy cows with special emphasis on the traits water and feed intake. In Chapter One the general relationship between these traits and additionally milk yield was analysed. Chapters Two and Three consist of model evaluation. Therefore, different fixed and random regression (FR, RR) models and in detail several error covariance structures and lactation curve models were evaluated. In Chapter Four a fuzzy logic model was developed in order to assess the potential of (amongst others) water and feed intake for lameness and mastitis detection.

Data recording was generally performed on the Futterkamp dairy research farm of the Chamber of Agriculture Schleswig-Holstein between March 2005 and February 2007. Four different datasets were used for the analyses in the different chapters.

In Chapter One the relationship between water and dry matter intake and milk yield was investigated in order to clarify whether these relationships remained constant over the stages of lactation. Estimations of variance components were accomplished by applying linear mixed FR and RR models. Repeatabilities with the FR model were assessed at 0.41, 0.34 and 0.76 for water intake, dry matter intake and milk yield and after applying the RR model they changed during the lactation to 0.46-0.52, 0.43-0.50 and 0.79-0.92, respectively. Correlations with the FR model between water and dry matter intake and between milk yield and water and dry matter intake were 0.73, 0.73 and 0.59, respectively, and after applying the RR model they ranged in the course of lactation between 0.76 and 0.82, 0.13 and 0.84 and 0.48 and 0.93, respectively. Hence, the variance components of these traits differed during lactation. Thus the use of RR models must be emphasised to analyse these traits.

In Chapter Two the daily measured traits water and dry matter intake and milk yield were analysed with FR- and RR models added with different error covariance structures. It was investigated whether these models deliver better model fitting in contrast to conventional FR- and RR models using the likelihood ratio test, Akaike’s and Bayesian’s information criteria. Furthermore, possible autocorrelation between repeated measures was investigated. The effect of model choice on statistical inference was also tested. Different autocorrelation patterns were found. Adjacent repeated measures of daily milk yield were highest correlated ($r_{e1} = 0.32$) in contrast to measures further apart, while for water intake and dry matter intake, the measurements being two units apart had the highest
correlations with $r_{e2} = 0.11$ and 0.12. The covariance structure of TOEPLITZ was most suitable to indicate the dependencies of the repeated measures for all traits. Generally, the most complex model, RR with the additional covariance structure TOEPLITZ, provided the lowest information criteria. Furthermore, the model choice influenced the significance values of one fixed effect and therefore the general inference of the data analysis. Thus, the RR + TOEPLITZ model is recommended for use for the analysis of equally spaced datasets of water intake, dry matter intake and milk yield.

In Chapter Three six different lactation curve models for the daily measured traits water intake and dry matter intake were evaluated. The different functions were tested for the fixed effect of the lactation curve as well as for the individual (random) effect of the lactation curve. Model fit was evaluated by the likelihood ratio test, Akaike’s and Bayesian’s information criteria. The Ali and Schaeffer function was most suitable to model the fixed effect of the lactation curve for both traits. The Legendre polynomial of order 4 delivered the best model fit for the random effects of lactation day. Repeated measures seemed to be autocorrelated and thus a covariance structure for the residuals was applied. Generally, the most complex model, using the Ali and Schaeffer function and the Legendre polynomial of order 4 to model the average lactation and the cow-specific lactation curve and including the additional error covariance structure Spatial (Power), provided the lowest information criteria. This model is recommended for the analysis of water intake and dry matter intake including missing observations.

Chapter Four deals with the development of a fuzzy logic model for classification and control of lameness and mastitis in cows. Lameness treatments were used to determine two definitions of lameness; they differed in the length of the corresponding disease block. Mastitis was determined according to the definitions: (1) udder treatments and (2) udder treatment or SCC over 400,000/ml. Disease alerts by the fuzzy logic model were generated using as input data the variables milk yield, dry matter intake, dry matter intake behaviour (number of visits at the feeding trough, time spent at the feeding troughs), water intake, activity and information about preliminary diseases. To develop and verify the model, the dataset was divided into training data (9,074 records) and test data (4,604 records). The evaluation of the model was carried out according to sensitivity, specificity and error rate. If the block-sensitivity was set to be at least 70%, the specificity for lameness detection ranged
between 75.3% and 75.9% and the error rate varied between 98.9% and 99.5% depending on lameness definition. With the mastitis detection models, specificities ranged between 84.1% and 92.1%, while error rates were obtained between 96.2% and 97.9%. The results of the test data verified those of the training data, indicating that the models could be generalised but also are not yet applicable in practice.
Zusammenfassung

In Kapitel 1 werden zunächst die Beziehungen zwischen Wasser- und Futteraufnahme sowie Milchleistung untersucht, um in einem weiteren Schritt zu überprüfen, ob sich diese Beziehungen zwischen den Merkmalen möglicherweise im Laktationsverlauf verändern. Die Varianzkomponentenschätzung erfolgte mit Hilfe von linearen, gemischten FR- und RR-Modellen. Dabei konnten mit dem FR-Modell Wiederholbarkeiten von 0,41, 0,34 und 0,76 für die Merkmale Wasser- und Futteraufnahme sowie Milchleistung geschätzt werden. Die mit dem RR-Modell ermittelten Wiederholbarkeiten variierten im Verlauf der Laktation zwischen 0,46 und 0,52, 0,43 und 0,50 sowie zwischen 0,79 und 0,92. Die mit dem FR-Modell ermittelten Wiederholbarkeiten variierten im Verlauf der Laktation zwischen 0,46 und 0,52, 0,43 und 0,50 sowie zwischen 0,79 und 0,92. Die mit dem FR-Modell geschätzte tierbedingte Korrelation zwischen Wasser- und Futteraufnahme wurde mit 0,73 angegeben, während diese im Laktationsverlauf zwischen 0,76 und 0,82 variierte (RR-Modell). Die Milchleistung und die Wasser- bzw. Futteraufnahme waren unter Anwendung des FR-Modells mit 0,73 bzw. 0,59 korreliert, im Laktationsverlauf aber schwankten diese Korrelationen zwischen 0,13 und 0,84 bzw. 0,48 und 0,93 (RR-Modell). Somit konnte gezeigt werden, dass die Varianzkomponenten dieser Merkmale sich als nicht konstant über die Laktation erweisen und dass aus diesem Grund RR-Modelle zur Analyse dieser Merkmale empfohlen werden müssen.

Bei der Auswertung traten in Abhängigkeit der Merkmale unterschiedliche Autokorrelationsmuster auf. Beim Merkmal Milchleistung waren benachbarte, wiederholte Messungen höher korreliert als weiter auseinander liegende ($r_{e1} = 0,32$), während bei den Merkmalen Wasser- und Futteraufnahme diejenigen Beobachtungen mit $r_{e2} = 0,11$ und 0,12 die höchsten Korrelationen aufwiesen, die einen Abstand von zwei Tagen voneinander hatten. Die TOEPLITZ-Kovarianzstruktur eignete sich am besten zur Abbildung der Abhängigkeiten aller Merkmale. Insgesamt zeigte das komplexeste aller getesteten Modelle (RR-Modell mit der zusätzlichen TOEPLITZ-Kovarianzstruktur) die niedrigsten und damit besten Informationskriterien. Des Weiteren stellte sich heraus, dass die Modellwahl die Signifikanz eines fixen Effektes entscheidend beeinflusste. Deshalb muss das RR + TOEPLITZ-Modell für die Analyse von Wasser- und Futteraufnahme sowie Milchleistung empfohlen werden, sofern die Daten keine fehlenden Beobachtungen aufweisen.

Kapitel 3 beschäftigt sich mit der Evaluierung von sechs verschiedenen Funktionen zur Modellierung des Laktationsverlaufs der täglich erfassten Merkmale Wasser- und Futteraufnahme. Die verschiedenen Funktionen wurden sowohl für die Modellierung des fixen Effektes der durchschnittlichen Laktationskurve aller Kühe als auch für die Abbildung des zufälligen Effektes des kuh-individuellen Laktationsverlaufs eingesetzt.

Für beide Merkmale erwies sich die Ali und Schaeffer-Funktion (AS) als die geeigneteste Funktion zur Modellierung des fixen Effektes des Laktationsverlaufs, während das Legendre-Polynom vierten Grades (Lg4) die beste Modellierung bei der kuh-individuellen Laktationskurve zeigte. Wiederholte Beobachtungen scheinen außerdem autokorreliert zu sein, weshalb eine Kovarianzstruktur für die Residuen angewendet wurde. Die niedrigsten Informationskriterien ergaben sich generell beim komplexesten Modell, welches die AS-Funktion und das Polynom Lg4 zur Modellierung der durchschnittlichen und kuh-individuellen Laktationskurve sowie die Kovarianzstruktur Spatial (Power) zur Abbildung der Abhängigkeiten der Residuen verwendete. Deshalb muss dieses Modell zur Analyse von
täglicher Wasser- und Futteraufnahme empfohlen werden, wenn die Datensätze auch fehlende Beobachtungen enthalten.

DANKSAGUNG

An dieser Stelle möchte ich mich bei den Menschen bedanken, die zum Gelingen dieser Arbeit beigetragen haben.

Mein aufrichtiger Dank gilt Herrn Prof. Dr. Joachim Krieter für die Überlassung des Themas, die wissenschaftliche Betreuung und die gewährleisteten Freiräume bei der Erstellung dieser Arbeit sowie für die Möglichkeiten, meine Ergebnisse auch im Ausland vorzustellen. Auf diesem Weg möchte ich ihm auch für die Wiedereinführung der sehr lehrreichen, aber auch Zusammenhalt fördernden Doktorandenrunden und der Doktorandenfahrt ein ganz herzliches Dankeschön aussprechen.

Für die Übernahme des Korreferates danke ich Herrn Prof. Dr. G. Thaller.

Das Projekt wurde ermöglicht durch die finanzielle Förderung der Stiftung Schleswig-Holsteinische Landschaft, bei der ich mich herzlich bedanke.

Für die Bereitstellung der Daten vom Lehr- und Versuchszentrum Futterkamp der Landwirtschaftskammer Schleswig-Holstein danke ich Herrn Dr. W. Lüpping, Frau Dr. K. Mahlkow und Herrn M. Schweigmann.

Bei Herrn Dr. David Cavero-Pintado bedanke ich mich für die ständige Hilfsbereitschaft im Programmieren von SAS, Matlab und die entstandene sehr gute Freundschaft.

Für die ständige Bereitschaft zum Korrekturlesen bedanke ich mich bei Eckhard, Sven, Lotti, Tina, Anna und nicht zuletzt bei meiner Schwester Hilke.

Darüber hinaus danke ich allen Kollegen und Freunden für die wunderbare Zeit am Institut, das äußerst angenehme Arbeitsklima und die vielen gemeinsamen Stunden auf Abgabebieren, Disputationen, Fußballabenden etc.. Des Weiteren bedanke ich mich bei unserer aktiven Fußballrunde (v.a. bei Stephan, Andreas, Andi, Rudolf, Jan, Thomas, Marrin und Anna), die mir stets sehr viel Spaß, draußen und in der Halle, gemacht hat. Diane und Imke T. danke ich für die sehr netten gegenseitigen Besuche in den jeweiligen Büros, Rike, Nina und Tino für

Lebenslauf

Name: Ewald Kramer

Geburtstag: 15. August 1979

Geburtsort: Leer (Ostfriesland)

Familienstand: ledig

Staatsangehörigkeit: deutsch

Eltern: Heddo Kramer † (Landwirt), Harmine Kramer (Krankenschwester)

Schulbildung
Aug. 85 – Jun. 89 Grundschule Ihrhove
Aug. 89 – Jun. 91 Orientierungsstufe Collhusen
Aug. 91 – Jun. 98 Ubbo-Emmius-Gymnasium Leer
Abschluss: allgemeine Hochschulreife

Zivildienst
Jul. 98 – Aug. 99 Zivildienst bei der Diakoniestation Ihrhove

Berufsausbildung
Okt. 99 – Nov. 02 Studium der Agrarwissenschaften mit der Fachrichtung Tierproduktion an der Christian-Albrechts-Universität Kiel,
Abschluss: Bachelor of Science
Nov. 02 – Aug. 04 Studium der Agrarwissenschaften mit der Fachrichtung Tierproduktion an der Christian-Albrechts-Universität Kiel,
Abschluss: Master of Science

Berufliche Tätigkeit
Sept. 03 – Okt. 05 Betriebsleiter des familiären Milchviehbetriebes in Dorenborg (Ostfriesland)
Seit Oktober 2005 Wissenschaftlicher Mitarbeiter am Institut für Tierzucht und Tierhaltung der Christian-Albrechts-Universität zu Kiel bei Herrn Prof. Dr. J. Krieter

Praktika
Jul. 01 – Okt. 01 Landwirtschaftliches Praktikum auf dem Milchviehzuchtbetrieb Gerd Klöcker, Schwege