Wie Insektenflügel Kollisionen überstehen

Forschende der CAU wollen Strategien von Insekten auf technische Anwendungen übertragen

Bienen auf Nahrungssuche kollidieren während des Fluges etwa einmal pro Sekunde mit kleinen Hindernissen wie Blüten, Blättern oder Ästen, ohne dabei größeren Schaden zu nehmen. Gleichzeitig wirken verschiedene aerodynamische Kräfte auf ihre Flügel, die sie mühelos aushalten – dabei machen die zarten Gebilde gerade einmal zwei Prozent der gesamten Masse eines Insektenkörpers aus. Wie die Flügel von Insekten diesen unterschiedlichen Anforderungen standhalten ohne zu zerbrechen, untersuchen Wissenschaftlerinnen und Wissenschaftler aus dem Zoologischen Institut der Christian-Albrechts-Universität zu Kiel (CAU). In einem Artikel in der aktuellen Ausgabe der Fachzeitschrift Advanced Science zeigen sie mehrere Besonderheiten in der Flügelstruktur auf, dank derer sie sowohl stabil als auch flexibel sind und sich so an unterschiedliche Belastungen anpassen können. Langfristig könnten diese Konstruktionsstrategien auch technische Anwendungen in der Robotik, Luftfahrt oder Biomedizin widerstandsfähiger machen, so die Forschenden.

Technische Konstruktionen erfüllen in der Regel nur eine der beiden Eigenschaften: Entweder sie halten große Traglasten aus, wie stabil tragende Bauteile in Gebäuden, oder sie geben bei äußeren Einwirkungen wie einem Zusammenstoß flexibel nach, um nicht zu zerbrechen. Ließen sich beide Fähigkeiten kombinieren, könnten effiziente technische Strukturen entwickelt werden, die ihre Formbarkeit den jeweiligen Anforderungen flexibel anpassen. Bisherige Ansätze dazu sind jedoch oft kompliziert und kostenintensiv und eignen sich so kaum für breit eingesetzte Anwendungen.
 

Besondere Flügelstruktur ermöglicht flexible Anpassung an verschiedene Belastungssituationen

„Was die ingenieurwissenschaftliche Forschung zurzeit noch beschäftigt, haben Insekten bereits perfektioniert: Dank eines besonderen Aufbaus können ihre Flügel verschiedene Flexibilitätsgrade einnehmen, je nachdem was die jeweilige Situation erfordert“, fasst Professor Stanislav Gorb von der Arbeitsgruppe „Funktionelle Morphologie und Biomechanik“ an der CAU das Ergebnis der Studie zusammen. Bisher standen häufig aerodynamische Aspekte im Fokus biologischer Forschung zu Insektenflügeln.

Das Forschungsteam vom Zoologischen Institut nahm jedoch den Aufbau der Flügel genauer in den Blick. Anhand von Libellenflügeln brachten sie erstmals drei Elemente in der Flügelstruktur und ihre Funktionen in Verbindung. Gemeinsam sorgen diese dafür, dass Kollisionen und Windkräfte während des Fluges Insekten nichts anhaben können: flexible Gelenke, mechanische Stopper und „Abknickbereiche“. Libellenflügel bestehen aus Adern, zwischen denen eine Membran gespannt ist. Winzige Gelenke verbinden die einzelnen Adern und ermöglichen so, dass sich die Flügel unter geringer Last verbiegen können. Bei stärkerer Belastung wird diese Bewegung von mikroskopisch kleinen Stacheln gestoppt, die an den Mikrogelenken sitzen. Diese „Stopper“ stützen die Flügel nun gegen die Belastung von außen. Und schließlich können bei einem Zusammenstoß mit einem Hindernis spezielle Bereiche am Flügelende für kurze Zeit reversibel einknicken. „Dank dieser drei Strukturen sind Insekten in der Lage, ihre Flügeleigenschaften anzupassen und so mehrere Funktionen gleichzeitig zu erfüllen, sagt Doktorand Ali Khaheshi, Erstautor der Studie.

Video zum wissenschaftlichen Artikel:

Bitte beachten Sie: Sobald Sie sich das Video ansehen, werden Informationen darüber an Youtube/Google übermittelt. Weitere Informationen dazu finden Sie unter Google Datenschutzerklärung.

Flügelstrategien auf Flugzeugmodell übertragen

Doch das Forschungsteam ging noch einen Schritt weiter: Um zu prüfen, ob ihre Theorie über die Konstruktionsstrategien der Insektenflügel auch einer praktischen Anwendung standhält, wendeten sie diese auf ein 8x5 Zentimeter großes und 3,8 Gramm schweres Flugzeugmodell an. Sie druckten es per 3D-Druck aus PLA / PLH-Filament und unterzogen es verschiedenen Kollisionsexperimenten mit Hindernissen und im freien Fall. Es zeigte sich, dass diese Flügel die Zusammenstöße überstanden, während auf herkömmliche Weise konstruierte Flugzeugmodelle zerbrachen. Zusätzlich testeten sie leicht abgewandelte Konstruktionen, bei denen sie jeweils eines der drei Konstruktionselemente wegließen. „Diese Experimente bestätigen, dass es alle drei Elemente in Kombination braucht“, sagt Ingenieur und Materialwissenschaftler Khaheshi. Das könnte auch mit anderen, qualitativ hochwertigeren Materialien funktionieren, vermuten die drei Forscher. 

Zentraler Aspekt ist, dass die Strategien bereits im Aufbau der Flügel integriert sind und autonom funktionieren, ohne zusätzliche Energie aktiv einbringen zu müssen. „Solche Erkenntnisse aus der Biologie könnten uns dabei helfen, technische Systeme zu konstruieren, die sich selbstständig an extreme oder unvorhergesehene Situationen anpassen – zum Beispiel in Umgebungen, in denen der Mensch nicht aktiv eingreifen kann, wie bei Weltraummissionen“, sagt Dr. Hamed Rajabi.

Originalpublikation:

Triple Stiffness: A Bioinspired Strategy to Combine Load-Bearing, Durability, and Impact-Resistance. Ali Khaheshi, Stanislav Gorb, Hamed Rajabi, Adv. Sci. 2021, 2004338, 18 March 2021, DOI: 10.1002/advs.202004338,  https://doi.org/10.1002/advs.202004338

Über den CAU-Forschungsschwerpunkt KiNSIS:

Auf der Nanoebene herrschen andere, quantenphysikalische, Gesetze als in der makroskopischen Welt. Strukturen und Prozesse in diesen Dimensionen zu verstehen und die Erkenntnisse anwendungsnah umzusetzen, ist das Ziel des Forschungsschwerpunkts »Nanowissenschaften und Oberflächenforschung« (Kiel Nano, Surface and Interface Science – KiNSIS) der Christian-Albrechts-Universität zu Kiel (CAU). In einer intensiven interdisziplinären Zusammenarbeit zwischen Physik, Chemie, Ingenieurwissenschaften und Life Sciences könnten daraus neuartige Sensoren und Materialien, Quantencomputer, fortschrittliche medizinische Therapien und vieles mehr entstehen. www.kinsis.uni-kiel.de

Libelle
© Stanislav Gorb

Etwa einmal pro Sekunde kollidieren Insekten auf Nahrungssuche im Flug mit kleinen Hindernissen wie Blüten, Blättern oder Ästen, ohne dabei größeren Schaden zu nehmen.

Grafik
© Hamed Rajabi

Insgesamt drei Elemente in der Struktur von Insektenflügeln sorgen dafür, dass Kollisionen und Windkräfte während des Fluges ihnen nichts anhaben können: flexible Gelenke, mechanische Stopper und „Abknickzonen“.

 

Grafik
© Ali Khaheshi

Die drei Kieler Wissenschaftler wendeten die Strategien der Insektenflügel, (1) flexible Gelenke, (2) Abknickbereiche und (3) mechanische Stopper, auch auf ein Flugzeugmodell an.

 

Flugzeug
© Ali Khaheshi

Das Flugzeug wurde mit einer Größe von 8 x 5 x1,1 Zentimetern und einem Gewicht von 3,8 Gramm per 3D-Druck hergestellt und verschiedenen Kollisionsexperimenten unterzogen.

 

Wissenschaftlicher Kontakt:

Professor Dr. Stanislav Gorb
Funktionelle Morphologie und Biomechanik, CAU
49 431 880-4513
sgorb@zoologie.uni-kiel.de
www.sgorb.zoologie.uni-kiel.de/

Dr. Hamed Rajabi
Funktionelle Morphologie und Biomechanik, CAU
+49 431 880 4506
hrajabi@zoologie.uni-kiel.de
harajabi@hotmail.com

Ali Khaheshi
Funktionelle Morphologie und Biomechanik, CAU
+49 (0)431 880-4859
akhaheshi@zoologie.uni-kiel.de
akhaheshi@hotmail.com

Pressekontakt:

Julia Siekmann
Referentin für Wissenschaftskommunikation, Forschungsschwerpunkt Kiel Nano Surface and Interface Sciences (KiNSIS)