Material für verformbare elektrische Leiter entwickelt
Nano-Isolierung ermöglicht Bauteile für Softrobotik und flexible Elektronik
Klassische Roboter, wie sie in der Industrie eingesetzt werden, können schwere Lasten stemmen und automatisierte Vorgänge präzise wiederholen, zum Beispiel in Fertigungsanlagen. Doch für feinmotorische Tätigkeiten und die Interaktion mit Menschen sind sie zu starr und zu schwerfällig. Das Forschungsfeld der Softrobotik arbeitet an Robotern aus weichen, organischen Materialien und flexiblen technischen Bauteilen. Materialforschende der Christian-Albrechts-Universität zu Kiel (CAU) haben jetzt ein neuartiges flexibles, elektrisch leitfähiges Material entwickelt. Im Gegensatz zu konventionellen weichen Leitern bleiben seine elektrischen Eigenschaften auch dann unverändert, wenn es stark verformt wird. Gründe hierfür sind der besondere Aufbau des Materials und seine extrem dünne Nano-Beschichtung. Seine Ergebnisse veröffentlichte das Forschungsteam in der aktuellen Ausgabe des Fachmagazins Advanced Functional Materials.
Elektrischer Widerstand bleibt konstant
Im Gegensatz zu klassischen Robotern können Menschen und Tiere fließende und feinmotorische Bewegungen ausführen und an ihre Umgebung anpassen. Inspiriert von der Natur setzt die Softrobotik daher auf nachgebende, organische Materialien aus Kohlenstoff statt auf herkömmliche, starre Metalle. Außerdem brauchen „softe“ Roboter elastische elektrische Leiter für die Kommunikation zwischen ihren Sensoren und Aktoren. „Herkömmliche Leiter aus Metall leiten Strom natürlich gut, sind aber zu starr für den Einsatz in flexiblen Bauteilen. Werden sie verformt, ändern sie ihren elektrischen Widerstand und das beeinträchtigt ihren Einsatz in der Softrobotik“, so Dr. Fabian Schütt, Leiter der Nachwuchsgruppe „Multiscale Materials Engineering" am Lehrstuhl für Funktionale Nanomaterialien der CAU.
Der Widerstand des Materials, das Schütt gemeinsam mit Kollegen am Institut für Materialwissenschaft der CAU entwickelt hat, bleibt dagegen konstant, auch wenn es verformt wird. „Auch nach 2.000 Langzeittests, bei denen wir das Material um bis zu 50 Prozent komprimiert haben, blieben seine elektrischen und mechanischen Eigenschaften erhalten“, sagt Igor Barg, Doktorand am Lehrstuhl für Materialverbunde und Erstautor des Artikels. Durch die Kombination verschiedener Expertisen im Rahmen des CAU-Forschungsschwerpunkts KiNSIS (Kiel Nano, Surface and Interface Science) ist ein Material aus feinen, miteinander verbundenen Drähten entstanden, das optisch einem dunklen Schwamm ähnelt. Grundlage sind winzige Röhren aus einem elektrisch leitfähigen Polymer. Diese filigrane Netzwerkstruktur macht das Material ultraleicht und gleichzeitig extrem elastisch.
Nano-Isolierung schützt elektrische Eigenschaften des Materials
„Verformbare, schwammartige Leiter werden bereits seit einigen Jahren erforscht. Aber sobald sie verformt werden, verändert sich auch bei ihnen der Widerstand, aufgrund des sogenannten piezoresistiven Effekts“, erklärt Barg weiter. Um diesen Effekt zu umgehen, beschichtete das Team das Material mit einem nicht leitfähigen, extrem dünnen Polymerfilm, der wie eine Isolierung funktioniert. „Das kann man sich wie bei einem klassischen Stromkabel vorstellen“, sagt Barg. Die Schicht verhindert, dass die Drähte beim Komprimieren in direkten Kontakt miteinander kommen und neue elektrisch leitende Pfade entstehen. So bleibt der Widerstand selbst bei einer starken Verformung konstant. Außerdem verbessert die Isolierung die mechanische Stabilität der Drähte und schützt ihre elektrischen Eigenschaften vor äußeren Einflüssen wie Feuchtigkeit.
Um ein so filigranes Netzwerkmaterial – die Wissenschaftler sprechen von einer „hochporösen Gerüststruktur“ – mit einem isolierenden Polymerfilm zu beschichten, braucht es eine besondere Methode. Dr. Stefan Schröder, Leiter der Nachwuchsgruppe „Functional CVD Polymers“ am Lehrstuhl für Materialverbunde, arbeitet mit der sogenannten initiierten chemischen Gasphasenabscheidung (initiated Chemical Vapor Deposition, iCVD). Damit lassen sich auch Materialien mit komplexen Strukturen und Oberflächen beschichten. In einer Reaktionskammer bringt Schröder verschiedene Gase zusammen und setzt so eine chemische Reaktion in Gang: Auf dem zu beschichtenden Material beginnt ein dünner Polymerfilm zu wachsen. „Diese Beschichtung ist nur wenige Nanometer dünn. Deshalb bleiben die Drähte beweglich und das Gewicht des gesamten Materials nimmt kaum zu“, erklärt Schröder.
Auch Anwendungen in der Medizintechnik oder Energiespeicherung denkbar
„Dieses Beispiel zeigt sehr gut, wie wir durch eine nanoskalige Beschichtung die Eigenschaften unserer bis zu mehreren Kubikzentimeter großen Gerüststrukturen gezielt verändern und sogar ganz neue Funktionen schaffen können“, sagt Schütt. „Durch die Kombination unserer Methoden sind perspektivisch noch weitere, auch kommerzielle, Anwendungen denkbar, zum Beispiel in der Medizintechnik oder der Energiespeicherung“, ergänzt Schröder. Diese Möglichkeiten wollen sie jetzt in weiteren gemeinsamen Forschungsprojekten untersuchen.
Mechanischer Test im Video
Bitte beachten Sie: Sobald Sie sich das Video ansehen, werden Informationen darüber an Youtube/Google übermittelt. Weitere Informationen dazu finden Sie unter Google Datenschutzerklärung.
Das Video zeigt anhand eines Kompressionstests, wie die Beschichtung der Gerüststruktur die elastischen Eigenschaften wesentlich verbessert. © Igor Barg
Originalpublikation:
Igor Barg, Niklas Kohlmann, Florian Rasch, Thomas Strunskus, Rainer Adelung, Lorenz Kienle, Franz Faupel, Stefan Schröder, Fabian Schütt: Strain-invariant, Highly Water Stable All-organic Soft Conductors Based on Ultralight Multi-layered Foam-like Framework Structures, Adv. Funct. Mater. 2023, 2212688. doi.org/10.1002/adfm.202212688
Kontakt:
Lehrstuhl für Funktionale Nanomaterialien
Institut für Materialwissenschaft
www.tf.uni-kiel.de/matwis/fnano/de
Lehrstuhl für Materialverbunde
Institut für Materialwissenschaft
www.tf.uni-kiel.de/matwis/matv
Doktorand Igor Barg (von links) und Nachwuchsgruppenleiter Stefan Schröder und Fabian Schütt haben das Material für den elastischen Stromleiter entwickelt.
Die schematische Darstellung zeigt, wie die Grundstruktur des Materials zusammengepresst wird, ohne beschädigt zu werden.
Mechanische Tests machen deutlich, wie leicht das unbeschichtete Material (rechts) dauerhaft verformt wird. Im Vergleich dazu ist das beschichtete Material (links) deutlich elastischer. (Maßstab in blau: 6mm)
Ähnlich wie bei einem herkömmlichen Stromdraht: Eine Nano-Isolierung schützt die elektrischen Eigenschaften der feinen Drähte, aus denen das Material besteht.
Über den CAU-Forschungsschwerpunkt KiNSIS:
Im Nanokosmos herrschen andere, quantenphysikalische, Gesetze als in der makroskopischen Welt. Strukturen und Prozesse in diesen Dimensionen zu verstehen und die Erkenntnisse anwendungsnah umzusetzen, ist das Ziel des Forschungsschwerpunkts »Nanowissenschaften und Oberflächenforschung« (Kiel Nano, Surface and Interface Science – KiNSIS) der Christian-Albrechts-Universität zu Kiel (CAU). In einer intensiven interdisziplinären Zusammenarbeit zwischen Physik, Chemie, Ingenieurwissenschaften und Life Sciences könnten daraus neuartige Sensoren und Materialien, Quantencomputer, fortschrittliche medizinische Therapien und vieles mehr entstehen. www.kinsis.uni-kiel.de
Pressekontakt:
jsiekmann@uv.uni-kiel.de0431/880-4855 Details