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Approximating integral operators by a standard Galerkin discretisation typ-
ically leads to dense matrices. To avoid the quadratic complexity it takes to
compute and store a dense matrix, several approaches have been introduced
including H-matrices. The kernel function is approximated by a separable
function, this leads to a low rank matrix. Interpolation is a robust and pop-
ular scheme, but requires us to interpolate in each spatial dimension, which
leads to a complexity of md for m-th order. Instead of interpolation we
propose using quadrature on the kernel function represented with Green’s
formula. Due to the fact that we are integrating only over the boundary, we
save one spatial dimension compared to the interpolation method and get a
complexity of md−1.

Part of this research was funded by the
Deutsche Forschungsgemeinschaft

in project BO 3289/2-1.

1 Introduction

1.1 Model problem

We consider a Fredholm integral operator of the form

G[u](x) =

∫
Ω

g(x, y)u(y)dy

on a subdomain or submanifold Ω of Rd.
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This kind of operator occurs, e.g., in the integral equation formulation of the Poisson
problem in R2, where g is the singularity function g(x, y) = − 1

2π
log ‖x−y‖. Discretising

G by a standard Galerkin approach for a basis (ϕi)i∈I , yields a matrix G with entries

Gi,j :=

∫
Ω

∫
Ω

ϕi(x)g(x, y)ϕj(y) dx dy . (1)

In the standard case G can be expected to be a dense matrix.
Different approaches have been introduced to avoid the quadratic complexity for com-

puting and storing dense matrices: for translation-invariant kernel functions and simple
geometries, the matrix G has Toeplitz structure, which can be exploited by algorithms
based on the fast Fourier transformation. Wavelet techniques can be used in order to
compress the resulting dense matrix, if the underlying geometry can be described by a
small number of smooth maps [9]. Techniques like the fast multipole method [14, 15, 25]
and the panel clustering approach [21] use a degenerate approximation of the kernel
function and can handle complicated geometries particularly well. Multipole methods
without multipoles [1, 22] employ points on a curve surrounding the relevant domain to
construct an efficient and accurate approximation without the need of higher derivatives.

Algebraic methods like cross approximation [24, 10, 11, 2, 4] and HSS-matrices [23] use
the entries of the matrix to construct factorized approximations that are the counterpart
of degenerate expansions of the kernel function.

Our approach relies on similar principles as the techniques used in [8, 13, 23], but
we replace algebraic approximation by quadrature. This allows us to derive a flexible
and elegant algorithm for which rigorous convergence proofs are possible. Compared
to the other approaches we do not require higher derivatives or special expansions. We
present the resulting method in the framework of hierarchical matrices [7, 17, 19], which
translate the degenerate approximations into low rank matrices.

We stress that we are not only presenting an algorithm, but also a detailed error
analysis, which is to the best of our knowledge the first one for the method.

1.2 Degenerate kernel function

To approximate the matrix G by a hierachical matrix, we need to find low rank ap-
proximations for certain sub-matrices. Because there is a close connection between the
matrix G and the kernel function g, we can do this by approximating the kernel.

Let t× s ⊆ I × I be a sub-block of the product index set. In order to get a low rank
approximation for the corresponding sub-matrix G|t×s we are constructing a degenerated
kernel function g̃, i.e., functions aν : Rd → R and bν : Rd → R for ν ∈ {1, . . . , k} so that

g(x, y) ≈ g̃(x, y) =
k∑
ν=1

aν(x) bν(y) (2)

holds for all x, y ∈ Rd. The essential characteristic of a degenerated kernel is the
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separation of the variables, which implies

G̃i,j :=
k∑
ν=1

∫
ϕi(x)aν(x)dx

∫
ϕj(y) bν(y) dy

for all i, j ∈ I. The low rank matrix is therefore given by G|t×s ≈ AB> with matrices
A ∈ Rt×k and B ∈ Rs×k as follows:

Aiν :=

∫
ϕi(x)aν(x) dx and Bjν :=

∫
ϕj(y)bν(y) dy .

If k is small, this is a very efficient way of storing a low rank matrix because we have
k(#t+ #s) matrix entries instead of #t ·#s.

Typically we can find a degenerated kernel as in (2) only in an adequate distance to
the singularity. So we need a criterion which tells us when we are far enough from the
singularity and thereby which sub-matrices can be approximated with low rank matrices.
This criterion is the so-called admissibility condition which is defined according to the
nature of the considered problem and the kernel approximation.

1.3 Interpolation

One of the standard techniques to get a degenerated kernel is via Lagrange interpolation
as described in [6]. The interpolation operator on the reference interval [−1, 1] is given
by

I : C([−1, 1])→ Πm−1, u 7→
m∑
ν=1

u(ξν)Lν (3)

where Πm−1 is the space of (m−1)-th order polynomials and (ξν)
m
ν=1 are the interpolation

points with associated Lagrange polynomials (Lν)mν=1.
If [a, b] is an arbitrary closed interval, the transformed interpolation operator is given

by I[a,b][u] := (I[u◦Φ[a,b]])◦Φ−1
[a,b], where Φ[a,b] : [−1, 1]→ [a, b], x 7→ ((b−a)x+(b+a))/2

is the affine mapping from the reference interval to [a, b].

For an axially parallel box B ⊂ Rd with

B = [a1, b1]× · · · × [ad, bd]

the multidimensional interpolation operator is given by

IB := I[a1,b1] ⊗ · · · ⊗ I[ad,bd] . (4)

To apply interpolation to the d-dimensional model problem, we need the kernel func-
tion to be smooth in the considered domain, i.e., B in this case. We ensure this with an
admissibility condition. For t× s ⊆ I × I we define the corresponding domains

τ :=
⋃
i∈r

supp(ϕi), σ :=
⋃
i∈s

supp(ϕi)
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and (minimal) axially parallel boxes Bτ , Bσ containing τ and σ.
For the interpolation we use the standard admissibility condition

min{diam(Bτ ), diam(Bσ)} ≤ dist(Bτ , Bσ) (5)

and define the kernel approximation depending on the diameters of Bτ and Bσ

g̃(x, y) :=

{
IBτ [g(·, y)](x) if diam(Bτ ) ≤ diam(Bσ)

IBσ [g(x, ·)](y) otherwise
.

In the case diam(Bτ ) ≤ diam(Bσ), we have the degenerated kernel approximation
g̃(x, y) = IBτ [g(·, y)](x), i.e.,

g̃(x, y) =
∑
ν∈K

g(ξτ,ν , y)Lτ,ν(x)

due to (3) with K := {1, . . . ,m}d and

ξτ,ν := (ξ[a1,b1],ν1 , . . . , ξ[ad,bd],νd) and Lτ,ν := L[a1,b1],ν1 ⊗ · · · ⊗ L[ad,bd],νd

where

ξ[a,b],ν := Φ[a,b](ξν) and L[a,b],ν(x) :=
m∏

µ=0,µ 6=ν

x− ξ[a,b],µ

ξ[a,b],ν − ξ[a,b],µ

are the transformed interpolation points and Lagrange polynomials.
We define the entries of the matrix G̃ by

G̃ij :=

∫
τ

∫
σ

ϕi(x)g̃(x, y)ϕj(y) dx dy

and get the representation G̃ = AB> with

Aiν =

∫
τ

ϕi(x)Lτ,ν(x) dx and Bjν =

∫
σ

ϕj(y)g(ξτ,ν , y) dy (6)

for i ∈ t, j ∈ s and ν ∈ K, which implies rank G̃ ≤ #K = md. By the same arguments
rank G̃ ≤ md holds for the second case diam(Bτ ) ≥ diam(Bσ), too.

In this paper we can get to rank G̃ = 8m for the 2-dimensional model problem by using
the second Green formula and quadrature instead of rank G̃ = m2 with interpolation.

We are confident that this approach will lead to rank G̃ ≤ 4 dmd−1 or even rank G̃ ≤
2 dmd−1 for the d-dimensional problem.

That means a reduction in rank, and therefore in complexity, of approximately a factor
m compared to interpolation.
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2 Approximation by Green formula

We will use the Green formula to get a representation of the two-dimensional kernel
function that can easily be approximated by using quadrature and then leads to a low
rank matrix approximation.

2.1 Green formula for the kernel function

The kernel function for the two-dimensional problem is given by

g(x, y) = − 1

2π
log ‖x− y‖

and we denote the normal derivative in the first or in the second variable by

∂g

∂nx
(x, y) = −〈n(x), x− y〉

2π‖x− y‖2
and

∂g

∂ny
(x, y) = −〈n(y), y − x〉

2π‖x− y‖2
.

The following theorem converts the second Green identity as in [12] into an equation
referred to as the second Green formula below.

Theorem 2.1 (Second Green formula) Let Θ ⊆ Rd be a normal domain, Γ = ∂Θ
and let n : Γ → Rd be the outer normal direction. If u ∈ C2(Θ) satisfies the potential
equation ∆u = 0, we have

u(x) =

∫
Γ

g(x, z)
∂u

∂n
(z) dz −

∫
Γ

∂g

∂nz
(x, z)u(z) dz (7)

for all x ∈ Θ.

Proof. [16, Theorem 2.2.2.]

Lemma 2.2 For fixed y ∈ R2 the potential equation in R2\{y} is solved by g(x, y).

Proof. Let x, y ∈ R2 and x 6= y. Then we have

∆xg(x, y) = − 1

4π
∆x log ‖x− y‖2

= − 1

4π

(
∂

∂x1

2(x1 − y1)

‖x− y‖2
+

∂

∂x2

2(x2 − y2)

‖x− y‖2

)
= − 1

4π

(
2

‖x− y‖2
− 4(x1 − y1)2

‖x− y‖4
+

2

‖x− y‖2
− 4(x2 − y2)2

‖x− y‖4

)
= − 1

2π‖x− y‖2

(
2− 2

‖x− y‖2

‖x− y‖2

)
= 0 .
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So we can apply the second Green formula (7) to u(x) := g(x, y) and get

g(x, y) =

∫
Γ

g(x, z)
∂g

∂nx
(z, y) dz −

∫
Γ

∂g

∂ny
(x, z)g(z, y) dz . (8)

In this representation of the kernel function we have separated variables and therefore
almost a degenerated kernel function as in (2) just with integrals instead of a sum.
So far this representation is exact, but by approximating the path integrals over Γ by
quadrature we obtain a practical algorithm.

2.2 Approximation by quadrature

To use the Green formula (7) for the kernel function we have to choose Θ as a normal
domain around one of the bounding boxes, so the obvious choice would be a circle or
a rectangle, e.g., with Bτ ⊂ Θ. In order to apply quadrature techniques to the kernel
function represented with the Green formula (8), we need a parametrisation for the
boundary Γ of Θ. But first we need an admissibility condition to ensure the smoothness
of the kernel on the domains we are about to use our technique on.

For the two-dimensional problem the bounding boxes Bτ and Bσ can be written as
Bτ = [a1, b1]× [a2, b2] with a1 < b1, a2 < b2 and Bσ = [c1, d1]× [c2, d2] with c1 < d1, c2 <
d2. We use the maximal diameter and distance of the bounding boxes in coordinate
direction, i.e.,

diammax(Bτ ) := sup{‖x− y‖∞ : x, y ∈ Bτ}
= max{|b1 − a1|, |b2 − a2|}

and

distmax(Bτ , Bσ) := inf{‖x− y‖∞ : x ∈ Bτ , y ∈ Bσ}
= max{dist([a1, b1], [c1, d1]), dist([a2, b2], [c2, d2])} .

to define the admissibility condition

diammax(Bτ ) ≤ distmax(Bτ , Bσ) . (9)

For the construction of a parametrisation we define

δ :=
1

2
diammax(Bτ ) . (10)

In the following let Γ =
⋃4
ι=1 Γι be a rectangle with the four-part parametrisation

γ1 : [−1, 1]→ Γ1 ⊆ R2, γ1(t) =

(
b1+a1

2
+ b1−a1+2δ

2
t

a2 − δ

)
,

γ2 : [−1, 1]→ Γ2 ⊆ R2, γ2(t) =

(
b1 + δ

b2+a2
2

+ b2−a2+2δ
2

t

)
,
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γ3 : [−1, 1]→ Γ3 ⊆ R2, γ3(t) =

(
b1+a1

2
− b1−a1+2δ

2
t

b2 + δ

)
,

γ4 : [−1, 1]→ Γ4 ⊆ R2, γ4(t) =

(
a1 − δ

b2+a2
2
− b2−a2+2δ

2
t

)
.

Bτ

Bσ

-�

distmax(Bτ , Bσ)ppppp ppppp

? -

6
�

Γ1

Γ2

Γ3

Γ4
-�

δ
-�

δ

6

?

δ

6

?

δ

For error estimates we need the following two lemmas which are consequences of the
construction of Γ with δ-distance around the bounding box Bτ .

Lemma 2.3 For all ι ∈ {1, 2, 3, 4} holds

‖γ′ι(t)‖ ≤ diammax(Bτ ) . (11)

Proof. For ι = 1 we have

‖γ′ι(t)‖ =
b1 − a1 + 2δ

2
=
b1 − a1 + diammax(Bτ )

2
≤ 2 diammax(Bτ )

2
.

For ι = 2, 3, 4 the proof is similar.

Lemma 2.4 Let the admissibility condition (9) hold. Then we have

δ ≤ min{dist(x,Γ), dist(Γ, y) : x ∈ Bτ , y ∈ Bσ} . (12)

Proof. Let y ∈ Bσ and choose z ∈ Γ with ‖y−z‖∞ minimal. Then we choose x ∈ Bτ with
‖x− z‖∞ minimal. By construction this implies ‖x− z‖∞ = δ. Since the admissibility
condition (9) holds, we have

‖y − z‖2 ≥ ‖y − z‖∞ ≥ ‖y − x‖∞ − ‖x− z‖∞ ≥ distmax(Bτ , Bσ)− δ

= distmax(Bτ , Bσ)− 1

2
diammax(Bτ ) ≥

1

2
diammax(Bτ ) = δ
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and therefore the proof is complete.

We use composite quadrature, e.g., Gaussian quadrature, with ` subsections with m
quadrature points each. Let t1, . . . , tm` ∈ [−1, 1] and w1, . . . , wm` ∈ R be the whole of
the quadrature points and weights, then we have with (8)

g(x, y) ≈ g̃(x, y) =
4∑
ι=1

m∑̀
ν=1

(‖γ′ι(tν)‖wν g(x, γι(tν))
∂g

∂nx
(γι(tν), y)−

‖γ′ι(tν)‖wν
∂g

∂ny
(x, γι(tν)) g(γι(tν), y) .

(13)

With this degenerate representation of the kernel, we can get a low rank approximation
for the corresponding matrix block of the admissible index sub-blocks t× s ⊆ I × I.

2.3 Low rank approximation of the matrix block

We seek a low rank matrix G̃|t×s for the corresponding sub-matrix G|t×s. We can achieve

this by defining the entries of the matrix G̃|t×s by

G̃ij =

∫
Ω

∫
Ω

ϕi(x)g̃(x, y)ϕj(y) dx dy for i ∈ t, j ∈ s.

Inserting the quadrature approximation g̃(x, y) from (13) we have the representation

G̃|t×s =
4∑
ι=1

AιB
>
ι − ÂιB̂>ι

with

(Aι)iν = ‖γ′ι(tν)‖wν
∫

Ω

g(x, γι(tν))ϕi(x) dx

(Âι)iν = ‖γ′ι(tν)‖wν
∫

Ω

∂g

∂ny
(x, γι(tν))ϕi(x) dx

(Bι)jν =

∫
Ω

∂g

∂nx
(γι(tν), y)ϕj(y) dy

(B̂ι)jν =

∫
Ω

g(γι(tν), y)ϕj(y) dy

(14)

for i ∈ t, j ∈ s and ν ∈ {1, . . . ,m`}, which implies rank G̃|t×s ≤ 8m`, i.e., rankm`

for each AιB
>
ι and each ÂιB̂

>
ι . The integrals (14) are the same that appear in colloca-

tion methods, but here the kernel is integrated only in a smooth region, i.e., standard
quadrature formulae apply.

10



3 Error analysis

Before starting the error analysis, we need to take a look at one particular property of
our kernel function.

Definition 3.1 (Asymptotically smooth kernel function) A kernel function g :
Rd × Rd → R is called asymptotically smooth, if there exist constants Cas > 0 and
c0 ≥ 1 and a singularity degree σ ∈ N such that for all n ∈ N0, x, y ∈ Rd with x 6= y and
all directions p ∈ Rd × Rd the inequality

|∂np g(x, y)| ≤ Cas
(σ − 1 + n)!cn0‖p‖n

‖x− y‖σ+n
(15)

holds.
The function is also called asymptotically smooth, if (15) holds for σ = 0 and all

n ∈ N, x, y ∈ Rd with x 6= y and all directions p ∈ Rd × Rd. σ = 0 corresponds to
logarithmic singularities.

We observe that our kernel function g(x, y) = − 1
2π

log ‖x−y‖ is asymptotically smooth
with σ = 0 according to Definition 3.1 [18, Korollar E.1.2].

The approximation of our method takes place in the quadrature, therefore the error
is closely related to the approximation error of the composite quadrature.

We recall that a quadrature rule for the integral

I : C[−1, 1]→ R, f 7→
∫ 1

−1

f(x) dx

is given by

Q : C[−1, 1]→ R, f 7→
m∑̀
ν=1

wνf(xν)

and the error estimate for composite quadrature of n-th degree with ` subsections reads

|I(f)−Q(f)| ≤ 2(2 + CQ)

(
1

2`

)n+1 ‖f (n+1)‖∞
(n+ 1)!

(16)

where CQ :=
∑m

ν=1 |wν | is the stability constant. In the case of Gauss quadrature we
have CQ = 2 and n = 2m− 1.

In the following theorem we examine the case σ > 0 although the proof is very similar
for the case σ = 0. We assume that g(x, y) is asymptotically smooth with singularity
degree σ and ∇x g(x, y) and ∇y g(x, y) are asymptotically smooth in every component
with σ + 1.

Theorem 3.2 (Quadrature error) Let g(x, y) be asymptotically smooth with singu-
larity degree σ 6= 0 and ∇x g(x, y) and ∇y g(x, y) be asymptotically smooth with σ + 1.
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For the approximation error for composite quadrature of n-th degree with ` subsections
with m quadrature points each as in formula (13) we have

|g(x, y)− g̃(x, y)| ≤ 8 C p(n+ 1)
(c0

`

)n+1

for all x ∈ Bτ and y ∈ Bσ with c0 ≥ 1, C > 0, and a polynomial p.

Proof. Let ι ∈ {1, . . . , 4} be fixed. We denote the first inner integral term of (8) as f ,
more precisely

f(t) := g(x, γι(t))
∂g

∂nx
(γι(t), y) . (17)

To determine the error |g(x, y)− g̃(x, y)| we use the well known error estimate (16) for
composite quadrature formulae Q of n-th degree

Q(f) =
m∑̀
ν=1

wν g(x, γι(tν))
∂g

∂nx
(γι(tν), y)

on the function f with the exact integral

I(f) =

∫ 1

−1

g(x, γι(t))
∂g

∂nx
(γι(t), y) dt .

In order to use the Leibniz formula to calculate f (n+1) we take a look at each of the
two factors in f . By defining

h(z, y) :=
∂g

∂nx
(z, y)

we get with nι := n(γι(t)), |nι| = 1 and the Cauchy-Schwarz-inequality∣∣∂nγ′ι(t)h(γι(t), y)
∣∣ =

∣∣∂nγ′ι(t)〈nι,∇x g(γι(t), y)〉
∣∣

=
∣∣〈nι, ∂nγ′ι(t)∇x g(γι(t), y)〉

∣∣
≤
∣∣∂nγ′ι(t)∇x g(γι(t), y)

∣∣
and therefore a function to which Definition 3.1 applies with singularity degree σ + 1
and a constant Cas,h as we assumed ∇x g(x, y) to be asymptotically smooth in every
component with σ + 1.

Since d2

dt2
γι(t) ≡ 0 for all ι ∈ {1, 2, 3, 4} the n-th derivative of g(x, γι(t)) equals the

n-th directional derivative in γ′ι(t) direction:

dn

dtn
g(x, γι(t)) = ∂nγ′ι(t) g(x, γι(t)) . (18)

This also holds for the n-th derivative of h(γι(t), y):

dn

dtn
h(γι(t), y) = ∂nγ′ι(t) h(γι(t), y) . (19)
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With (18) and (19) we can use the Leibniz formula on |f (n+1)| as follows

|f (n+1)(t)| =
∣∣∣∣ dn+1

dtn+1

(
g(x, γι(t))

∂g

∂nx
(γι(t), y)

)∣∣∣∣
≤

n+1∑
k=0

(
n+ 1
k

) ∣∣∂kγ′ι(t) g(x, γι(t))
∣∣ ∣∣∣∂n+1−k

γ′ι(t)
h(γι(t), y)

∣∣∣ . (20)

Now we can use the asymptotical smoothness (15) of both the kernel and the function
h and get

|f (n+1)(t)| ≤
n+1∑
k=0

(
n+ 1
k

)
Cas,g

(σ − 1 + k)!ck0,g‖γ′ι(t)‖k

‖x− γι(t)‖σ+k

Cas,h

(σ + 1 + n− k)!cn+1−k
0,h ‖γ′ι(t)‖n+1−k

‖γι(t)− y‖σ+n+2−k .

Since ‖x− γι(t)‖ ≥ dist(x,Γ) and ‖γι(t)− y‖ ≥ dist(Γ, y) holds for all ι and with

δ ≤ min{dist(x,Γ), dist(Γ, y)}

according to Lemma 2.4, and by defining Cas := Cas,gCas,h and c0 := max{c0,g, c0,h}
we obtain

|f (n+1)(t)| ≤ Cas

n+1∑
k=0

(
n+ 1
k

)
(σ − 1 + k)!(σ + 1 + n− k)!cn+1

0 ‖γ′ι(t)‖n+1

δ 2σ+n+2

≤ Cas

δ 2σ+1

(
c0‖γ′ι(t)‖

δ

)n+1

(n+ 1)!
n+1∑
k=0

(σ − 1 + k)!(σ + 1 + n− k)!

(n+ 1− k)!k!

=
Cas

δ 2σ+1

(
c0‖γ′ι(t)‖

δ

)n+1

(n+ 1)! p(n+ 1)

where p is a polynomial of degree 2σ with

p(n+ 1) :=
n+1∑
k=0

σ−1∏
r=1

(k + r)
σ∏
s=1

(n+ 1− k + s) .

With equation (11) we get

|f (n+1)(t)| ≤ Cas

δ 2σ+1

(
c0 diammax(Bτ )

δ

)n+1

(n+ 1)! p(n+ 1)

=
Cas

δ 2σ+1
(2c0)n+1 (n+ 1)! p(n+ 1)

and inserted into the quadrature error estimate (16) we have

|I(f)−Q(f)| ≤ 2(2 + CQ)

(
1

2`

)n+1
Cas

δ 2σ+1
(2c0)n+1 p(n+ 1)
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= C
(c0

`

)n+1

p(n+ 1) (21)

where C :=
2(2+CQ)Cas

δ 2σ+1 .

We get a similar result if we choose the second inner integral term of (8) as f in (17)
so that we have twice the error (21) for each Γι and therefore for all four Γι it follows

|g(x, y)− g̃(x, y)| ≤ 4 · 2 · C p(n+ 1)
(c0

`

)n+1

.

Theorem 3.2 states that the choice of ` should be ` > c0 to get exponential decay to
counteract the polynomial growth of p with a larger n.

Remark 3.3 (Logarithmic singularities) Since our kernel function in two dimen-
sions g(x, y) = − 1

2π
log ‖x− y‖ is asymptotically smooth with σ = 0, the proof is slightly

different in that case: we have to treat the first summand of (20) separately and get a
logarithmic term. The final result, however, is not changed significantly except for the
constants and we get

|g(x, y)− g̃(x, y)| ≤ 8C ( | log δ|+ log(n+ 1) )
(c0

`

)n+1

.

4 Numerical experiments

The question is how our approach compares in numerical tests to other analytical tech-
niques for the approximation of the kernel function like the interpolation method as
described in [6]. With the second order tensor product interpolation operator (4) there
are m interpolation points for each direction, that is a local rank of k = m2.

Using the Green formula and quadrature we save one direction because we integrate
over the boundary Γ instead of the whole domain Θ. Hence we get a local rank of
k = 8m` with the four part parametrisation we described in section 2.2.

Another way to get a parametrisation to use with the Green formula (8) is to lay a
circle around one of the bounding boxes. Here we are not using Gauss quadrature but
spreading the quadrature points equally distanced across the circle. This is practicable
only in 2D, in higher dimensions this construction will be more complex, because we
are confronted with the task of arranging quadrature points on the sphere as ”equally
distanced” as possible. In case of a circle we have just one parametrisation instead of
four and get a local rank of k = 2m`. This advantage in rank shows in the right picture
of figure 1, where the left picture shows the error in relation to the quadrature order.

To control the quality of the approximation, the number of subintervals ` takes the
role of the parameter η which occurs in the admissibility condition for the interpolation,
and we can see that larger values of ` lead to faster convergence.

But before we go deeper into comparing our algorithm to interpolation, we will look
at the behaviour of the error and the computing time for various degrees of freedom,
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Figure 1: Error for n = 32768: different quadrature orders (left) and ranks (right)

quadrature orders and different numbers of subintervals for the composite quadrature
for the rectangle parametrisation. We will concentrate on this parametrisation, because
we have a rigorous error estimate in that case.

The underlying domain Ω is a circle in these prove of concept experiments.

n m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 factor
1024 5.50−06 1.64−06 5.14−07 1.65−07 − − − 3.22
2048 3.12−06 8.55−07 2.38−07 7.59−08 2.60−08 8.52−09 2.83−09 3.16
4096 1.55−06 4.26−07 1.18−07 3.93−08 1.31−08 4.34−09 1.40−09 3.17
8192 7.68−07 2.14−07 5.91−08 2.00−08 6.70−09 2.15−09 7.18−10 3.16

16384 4.50−07 1.29−07 3.80−08 1.27−08 4.27−09 1.32−09 4.59−10 3.12
32768 1.94−07 5.37−08 1.59−08 5.29−09 1.76−09 5.81−10 2.00−10 3.11
65536 9.87−08 2.72−08 7.80−09 2.70−09 9.14−10 3.02−10 1.04−10 3.09

Table 1: Matrix approximation error: ‖G− G̃‖2 for ` = 1 (SLP)

Table 1 shows the matrix approximation errors ‖G − G̃‖2 for different choices of the
quadrature order m with ` = 1, and different degrees of freedom n. The error behaves
like 5 · 10−5 · qm with q ≈ e−1.2 ≈ 0.3.

The same setting only with two subintervals, i.e. ` = 2, leads to similar errors as
shown in table 2. Here the error behaves like 10−5 · qm with q ≈ e−1.8 ≈ 0.17 and for
` = 3 table 3 shows a behaviour like 5 · 10−6 · qm with q ≈ e−2.5 ≈ 0.08.

The total time needed to build an H-matrix can be seen in table 4 for ` = 1 and in
table 5 for ` = 3. We observe a behaviour like O(nk log n) as can also be seen in figure 3.

We can use our technique not only for the single layer potential (SLP), but also for
the double layer potential (DLP). Instead of computing the matrix Gij like in (1) for
the SLP, we build the matrix with

Gij :=

∫
Ω

∫
Ω

ϕi(x)
∂g

∂ny
(x, y)ϕj(y) dx dy
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n m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 factor
1024 − − − − − − − −
2048 4.12−08 6.28−09 9.50−10 1.44−10 − − − 6.60
4096 2.16−08 3.19−09 4.73−10 7.43−11 1.18−11 1.87−12 3.08−13 6.36
8192 1.11−08 1.64−09 2.41−10 3.81−11 6.07−12 9.73−13 1.56−13 6.37

16384 6.87−09 1.02−09 1.51−10 2.36−11 3.75−12 6.01−13 9.76−14 6.37
32768 3.01−09 4.40−10 6.55−11 1.04−11 1.65−12 2.63−13 4.32−14 6.38
65536 1.49−09 2.20−10 3.31−11 5.30−12 8.44−13 1.36−13 2.22−14 6.33

Table 2: Matrix approximation error: ‖G− G̃‖2 for ` = 2 (SLP)

for the DLP. Since ∂g
∂ny

(x, y) also solves the potential equation, we can apply the Green

formula as above and get

∂g

∂ny
(x, y) =

∫
Γ

g(x, z)
∂2g

∂nzny
(z, y) dz −

∫
Γ

∂g

∂nz
(x, z)

∂g

∂ny
(z, y) dz . (22)

For (22) we can use the same parametrisation and quadrature as we used for the SLP
in Section 2.2.

Table 6 shows the behaviour of the error ‖G− G̃‖2 for the DLP and ` = 1. We can see
that the error is slightly larger than it was under the same circumstances for the SLP
but decays for growing m and n in the same way as before.
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Figure 2: Error for SLP and DLP: n = 32768, ` = 1 (left), ` = 2 (right)

The errors for SLP and DLP for different quadrature orders are presented in figure 2.
The left picture shows the errors for just one interval ` = 1 and the right picture shows
the errors for two subintervals ` = 2. In both pictures it is visible that the error behaves
like O(qm) as seen before in tables 1, 2 and 6.

The total time needed to build a H-matrix for the double layer potential and ` = 1
can be seen in table 7. It does not differ much from the total time for the SLP build.

Figure 3 shows the relative time needed for the SLP build with ` = 1 and ` = 3 (in the
first picture) compared to DLP build with ` = 1 and ` = 3 (in the second picture) with
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n m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 factor
1024 − − − − − − − −
2048 2.03−09 1.26−10 − − − − − 16.0
4096 9.77−10 6.20−11 4.90−12 2.88−13 2.27−14 2.04−15 1.54−16 13.8
8192 4.97−10 3.32−11 2.60−12 1.49−13 1.15−14 1.02−15 7.84−17 13.5

16384 3.03−10 2.04−11 1.58−12 8.62−14 7.31−15 6.62−16 4.97−17 13.5
32768 1.36−10 9.19−12 7.30−13 3.98−14 3.08−15 2.87−16 2.18−17 13.5
65536 6.52−11 4.74−12 3.82−13 2.34−14 1.95−15 1.75−16 1.42−17 12.9

Table 3: Matrix approximation error: ‖G− G̃‖2 for ` = 3 (SLP)

n m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
1024 0.2 0.2 0.2 0.2 0.3 0.3 0.3
2048 0.5 0.5 0.6 0.6 0.7 0.7 0.7
4096 1.1 1.3 1.7 1.7 1.8 1.9 2.0
8192 2.4 2.8 3.6 3.9 4.2 4.6 5.1

16384 5.4 6.3 7.9 8.6 9.4 10.2 11.3
32768 12.3 14.2 17.2 19.1 20.9 23.1 25.4
65536 26.9 31.2 37.5 42.0 46.3 51.2 55.8

Table 4: Building the H-matrix in seconds for ` = 1 (SLP)

n m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
1024 0.3 0.3 0.3 0.3 0.3 0.3 0.3
2048 0.9 0.9 1.2 1.2 1.2 1.2 1.2
4096 2.5 2.6 2.7 2.9 3.6 3.7 3.8
8192 7.1 7.3 7.7 8.3 10.3 10.6 10.9

16384 15.2 16.2 18.1 22.5 26.7 27.6 28.5
32768 33.0 36.0 41.1 53.2 60.6 63.9 66.8
65536 74.1 81.1 93.3 111.7 127.1 137.8 146.7

Table 5: Building the H-matrix in seconds for ` = 3 (SLP)

n m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 factor
1024 8.77−06 2.62−06 5.98−07 1.91−07 − − − 3.62
2048 5.79−06 1.93−06 4.12−07 1.12−07 3.93−08 1.02−08 3.61−09 3.50
4096 2.95−06 1.00−06 3.47−07 6.88−08 2.95−08 6.92−09 2.46−09 3.53
8192 1.59−06 5.06−07 1.77−07 3.43−08 1.49−08 3.50−09 1.24−09 3.48

16384 9.66−07 3.04−07 9.45−08 1.64−08 1.01−08 3.84−09 9.84−10 3.29
32768 5.26−07 1.35−07 4.42−08 8.90−09 3.75−09 8.86−10 3.17−10 3.57
65536 3.34−07 6.80−08 2.23−08 4.39−09 1.87−09 4.44−10 1.58−10 3.72

Table 6: Matrix approximation error: ‖G− G̃‖2 for ` = 1 (DLP)
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n m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
1024 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2048 0.2 0.2 0.2 0.3 0.3 0.3 0.3
4096 0.6 0.6 0.7 0.7 0.7 0.8 0.9
8192 1.4 1.5 1.7 1.9 2.0 2.2 2.4

16384 3.2 3.6 4.1 4.6 5.1 5.5 6.0
32768 7.5 8.3 9.5 10.7 11.9 13.1 14.2
65536 17.1 19.0 21.1 24.8 27.6 30.5 33.2

Table 7: Building the H-matrix in seconds for ` = 1 (DLP)
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Figure 3: Building the H-matrix in seconds/n

quadrature order m = 7 on a logarithmically scaled x-axis for the degrees of freedom.
The relative time for SLP is slightly higher than for DLP but the characteristics of
the curve are very similar, just the choice of the number of subintervals ` has greater
influence on the relative time: the higher `, the more time is needed. Altogether we
observe logarithmic growth in time like ∼ log2 n as predicted by standard theory.

Finally the question is how our approach compares in numerical tests to typical tech-
niques for the approximation of the kernel function like the interpolation method as
described in [6].

Figure 4 shows the decaying error for higher local ranks for SLP with ` = 1 and ` = 3
and DLP with ` = 1 and ` = 3 compared to interpolation. For ` = 1 we observe in
both cases, SLP and DLP, that our approach is more accurate at higher ranks than
interpolation.

So the basic algorithm is competitive as it is, but we have several options to enhance
the algorithm. We expect to be able to improve our method by exploiting the relation
between Dirichlet and Neumann values to reduce the rank by a factor of two. In this
case our method would come close to optimal efficiency. Above that we can construct
a very efficient hybrid method by using the quadrature approach with Green’s formula
combined with cross approximation and interpolation.
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Figure 4: Error ‖G− G̃‖2 for interpolation compared to our approach

5 Conclusion

Our algorithm can compete with other analytical methods like interpolation in matters
of error and timing. Especially when interested in larger problems and higher accuracies
our method has the advantage over interpolation.

We introduced the method only in the two-dimensional case, to keep the error analysis
simple. The algorithm, as it is presented here, is functional also for the three-dimensional
case. In three dimensions the cuboid parametrisation has six parts and we get a rather
high local rank of 12m2`2. Nevertheless we can make some adjustments (at the expense
of the simplicity of the algorithm) and get an efficient algorithm for the three-dimensional
case.

The development of an efficient hybrid method that will be competitive also in 3D
and an approximation by H2-matrices [20, 5] is the subject of future work.
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