Kiel University - CAU
You are here: HomePressArchive of Press ReleasesNr. 176 / 2010

Dies ist das Archiv der Pressemeldungen (bis Mai 2018)  Zu den neuen Meldungen

Press release No. 176/2010, 2010-12-01 | zur deutschen Fassung | print version | Search


Electron "Pairing"

Triplet superconductivity proven experientially for first time


Researchers at Christian-Albrechts-Universität zu Kiel (CAU), Ruhr-Universität Bochum (RUB) and Santa Barbara (USA) have made the first experimental breakthrough in quantum physics: Their studies on the "pairing behavior" of elec-trons have proven for the first time the existence of electron pairs, so-called Coo-per pairs, with parallel spin direction. Cooper pairs cause superconductivity – this is a particular state of material, in which the electrical resistance disappears. Until now the existence of triplet Cooper pairs has only been predicted theoretically. The results achieved by this research team headed by Prof. Kurt Westerholt and Prof. Hartmut Zabel (Department of Physics and Astronomy at RUB) could con-tribute to new, power saving components in the future. The researchers reported on their findings in the American Physical Society's noted journal "The Physical Review“.

Electron pairs in singlet state
If it were possible to eliminate electrical resistance we could reduce our electric bill significantly and make a significant contribution to solving the energy problem, if it were not for a few other problems. Many metals as well as oxides demon-strate a superconductive state, however only at low temperatures. The supercon-ductive effect results from Cooper pairs that migrate through the metal together "without resistance". The electrons in each Cooper pair are arranged so that their composite angular momentum is zero. Each electron has an angular momentum, the so-called spin, with a value of 1/2. When one electron spins counterclockwise (-1/2) and the other clockwise (+1/2), the total of the two spin values is zero. This effect, found only in superconductors, is called the singlet state.

Superconductive Cooper pairs
If a superconductor is brought into contact with a ferromagnetic material, the Cooper pairs are broken up along the shortest path and the superconductor be-comes a normal conductor. Cooper pairs cannot continue to exist in a singlet state in a ferromagnetic material. Researches at RUB (Prof. Konstantin Efetov, Solid State Physics) among others have, however, theoretically predicted a new type of Cooper pair, which has a better chance of survival in ferromagnetic mate-rials. In such Cooper pairs the electrons spin in parallel with one another so that they have a finite spin with a value of 1. Since this angular momentum can have three orientations in space, it is also known as the triplet state. "Obviously there can also be only one certain, small fraction of Cooper pairs in a triplet state, which then quickly revert to the singlet state" explained Prof. Kurt Westerholt. "The challenge was to verify these triplet Cooper pairs experimentally“.

Tunnel current from Cooper pairs
Superconductors allow us to produce highly sensitive detectors for magnetic fields, which even allow detection of magnetic fields resulting from brain waves. These detectors are called SQUID's (superconducting quantum interference de-vices) – components which use the superconductive quantum properties. The central feature in these components consists of so-called tunnel barriers with a series of layers made up of a superconductor, insulator and another supercon-ductor. Quantum mechanics allows a Cooper pair to be "tunneled" through a very thin insulating layer. Tunneling of a large number of Cooper pairs results in a tunnel current. "Naturally the barrier cannot be too thick, otherwise the tunnel current subsides. A thickness of one to two nanometers is ideal“, according to Prof. Hermann Kohlstedt (CAU).

Double success in Bochum und Kiel
If part of the tunnel barrier is replaced by a ferromagnetic layer, the Cooper pairs are broken up while they are still in the barrier and do not reach the superconduc-tor on the other side. The tunnel current decreases drastically. "Triplet Cooper pairs can, however, be tunneled much better through such a ferromagnetic bar-rier", says Dirk Sprungmann, who was involved as Ph.D. student. If we are suc-cessful in converting a portion of the singlet Cooper pairs to triplet Cooper pairs, the tunnel current should be significantly stronger and be able to pass through a thicker ferromagnetic layer. This is precisely what the physicists in Bochum and Kiel tested. They allowed the Cooper pairs to pass through ferromagnetic barriers with thicknesses of up to 10 nanometers. With this attempt the physicists achieved a double success. On the one hand they were able to experimentally verify the existence of triplet Cooper pairs, and, on the other, they demonstrated that the tunnel current is greater than for singlet Cooper pairs in conventional tunnel contacts. "These new ferromagnetic tunnel barriers may possibly be used for new types of components", states Dr. Martin Weides (Santa Barbara). With their research findings the scientists confirmed, among other things, the theoreti-cal work of a Norwegian research team published only a few weeks before.

Publication:
D. Sprungmann, K. Westerholt, H. Zabel, M. Weides, H. Kohlstedt: Evidence of triplet superconductivity in Josephson junctions with barriers of the ferromagnetic Heusler alloy Cu2MnAl. Physical Review B 82 (2010), DOI: 10.1103/PhysRevB.82.060505

Photos/material is available for download:
Please pay attention to our ► Hinweise zur Verwendung

Click to enlarge

Caption: A tunnel element and its layers.
Copyright: Uni Bochum

Image to download:
www.uni-kiel.de/download/pm/2010/2010-176-1.jpg


Contact:
Prof. Hartmut Zabel, Prof. Kurt Westerholt
Ruhr-Universität Bochum
phone: +49 234/32-23650, -23621
email: hartmut.zabel@rub.de, kurt.westerholt@rub.de

Prof. Dr. Hermann Kohlstedt
Christian-Albrechts-Universität zu Kiel
phone: +49 (0)431/880-6075
email: hko@tf.uni-kiel.de



Christian-Albrechts-Universität zu Kiel
Press and Communication Services, Sandra Sieraad
Address: D-24098 Kiel, phone: +49 (0431) 880-2104, fax: +49 (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de